

Physics-Based Sensor Models for Virtual Simulation of
Connected and Autonomous Vehicles

Dan Negrut, PhD Radu Serban, PhD
Professor Senior Scientist
Department of Mechanical Engineering Department of Mechanical Engineering
University of Wisconsin-Madison University of Wisconsin-Madison

Physics-Based Sensor Models for Virtual Simulation of Connected and Autonomous Vehicles

Dan Negrut, PhD
Professor
Department of Mechanical Engineering
University of Wisconsin-Madison
https://orcid.org/0000-0003-1565-2784

Radu Serban, PhD
Senior Scientist
Department of Mechanical Engineering
University of Wisconsin-Madison
https://orcid.org/0000-0002-4219-905X

Asher Elmquist
Graduate Research Assistant
Department of Mechanical Engineering
University of Wisconsin-Madison
https://orcid.org/0000-0002-0142-1865

https://orcid.org/0000-0002-0142-1865
https://orcid.org/0000-0002-4219-905X
https://orcid.org/0000-0003-1565-2784
https://orcid.org/0000-0002-0142-1865
https://orcid.org/0000-0002-4219-905X
https://orcid.org/0000-0003-1565-2784

A Report on Research Sponsored by

SAFER-SIM University Transportation Center
Federal Grant No: 69A3551747131

May 2020

i

DISCLAIMER

The contents of this report refect the views of the authors, who are responsible for the facts and
the accuracy of the information presented herein. This document is disseminated in the interest of
information exchange. The report is funded, partially or entirely, by a grant from the U.S. Department
of Transportation’s University Transportation Centers Program. However, the U.S. Government assumes
no liability for the contents or use thereof.

ii

Table of Contents

Table of Contents . i

List of Figures . iii

Abstract . vi

1 Introduction . 1

2 Chrono::Sensor . 3

3 Camera Modeling and Simulation . 9
3.1 Camera Model Background . 9
3.2 Camera Model Implementation . 10
3.3 Camera Simulation Results . 13

4 Lidar Modeling and Simulation . 19
4.1 Lidar Model Background . 19
4.2 Lidar Model Implementation . 20
4.3 Lidar Simulation Results . 22

5 GPS Modeling and Simulation . 26

6 IMU Modeling and Simulation . 28

7 Demonstration of Technology . 31

8 Conclusions . 34
8.1 Outcomes . 34
8.2 Impacts . 35
8.3 Future Work . 35

Bibliography . 37

iii

List of Figures

1.1 The fow of data into and out of an autonomous control program is shown here. The

control stack is independent of whether the setup is virtual or physical, so sensing and

dynamic response can be simulated to understand autonomous behavior in highly confgurable

environments (adapted from Girardin [1]). 2

2.1 The connection between Chrono physics and Chrono::Sensor is tightly coupled, but is run

at di�erent time steps due to the small time step requirement of dynamics and the slow

update frequencies of most sensors. Virtual world state information is sent from Chrono to

Chrono::Sensor with data returned to the user at specifc, and user-defned frequencies and

delays. 4

2.2 A general and typical example of flters that generate, augment, and return sensor data. . . 5

2.3 A concrete example of a possible setup for a camera sensor that generates an image using

ray tracing, anti aliases the image before resizing, applies multiple augmentation flters for

noise and distortion, and returns data to the user. 6

2.4 An advanced example that shows how Chrono::Sensor allows the use of a deep neural network

as a sensor data augmentation flter. 7

2.5 An example command process in Chrono/Chrono::Sensor shows the overlap of computation

made possible by eÿcient use of memory transactions and slower update rates in Chrono::sensor. 7

2.6 The use of multiple GPUs can allow Chrono::Sensor to simulate many sensors in the same

environment by distributing sensors among di�erent GPUs. Currently, the framework attempts

to place sensors on GPUs by update frequency to lower the frequency of scene updates, which

are the bottleneck of the sensor framework. 8

3.1 Image pipeline that shows data acquisition from scene through to image output for perception. 9

3.2 Noise model based on EMVA standard. 12

3.3 A comparison of undistorted and distorted images using pinhole and FOV models. The

distortion seeks to replicate an ELP 2MP camera with a 2.1 mm lens and ˘80° FOV. . . . 14

3.4 Correlation between variance and color intensity in linear images from SIDD. 15

iv

3.5 Comparison of full-resolution noisy images. 15

3.6 Comparison of a small section of noisy images illustrating di�erences in model assumption. . 16

3.7 Scaling of a single camera with and without noise shows little impact of noise augmentation

on simulation performance. Confguration: 16x9 camera aspect ratio, 30 Hz update frequency,

10 seconds of simulation time, color calibration object scene, RTX 2080ti GPU. 17

3.8 Scaling of a single camera shows the performance impact of increasing image size. Confgu-

ration: 16x9 camera aspect ratio, 30 Hz update frequency, 10 seconds of simulation time,

173k triangle scene, RTX 2080ti GPU. 17

3.9 Scaling of per-pixel samples for a single camera shows impact of super-sampling on simulation

performance. Confguration: 640x360 resolution, 30 Hz update frequency, 10 seconds of

simulation time, 173k triangle scene, RTX 2080ti GPU. 18

3.10 Scaling of cameras in a single scene shows the capability and performance impact of many

cameras. Confguration: 1280x720 resolution, 30 Hz update frequency, 10 seconds of

simulation time, 173k triangle scene, RTX 2080ti GPU. 18

4.1 Multiple or partial return phenomena utilized by lidar to detect multiple objects per beam. In

this example, the strongest return will also be the frst return. Modifed from velodynelidar.com

[2]. 19

4.2 Multiple or partial return phenomena utilized by lidar to detect multiple objects per beam. In

this example, the strongest return will also be the last return. Modifed from velodynelidar.com

[2]. 20

4.3 Sampling pattern for discrete lidar beam simulation. The discretization is parameterized by

the beam divergence angle and the width in samples of the beam. 21

4.4 Setup for beam divergence and sampling discretization test. 22

4.5 Comparison of sampling in the beam divergence model and its impact on returned range and

intensity for a single beam with two o�set walls at 50 and 60 m. Both walls are assumed to

have perfect refectance, and power dissipation is neglected. 23

4.6 Scaling of rays for a single lidar showing the potential for increasing the resolution of a

multi-sampled beams or many-beam lidars. Confguration: 5Hz update frequency, 10 seconds

of simulation time, 173k triangle scene, RTX 2080ti GPU. 24

v

4.7 Scaling of lidar in a single scene shows the capability and performance impact of simulating

many lidars. Confguration: resolution: 3800x48, 5Hz update frequency, 10 seconds of

simulation time, 173k triangle scene, RTX 2080ti GPU. 25

5.1 Illustration of two-dimensional GPS trilateration. 26

6.1 Demonstration and qualitative comparison of accelerometer and gyroscope noise between

simulation and real IMU. 30

7.1 Simulated images from a demonstration of a scaled autonomous vehicle navigating a closed

track using lidar to detect track boundaries. 31

7.2 Simulated point clouds from a demonstration of a scaled autonomous vehicle navigating a

closed track using lidar to detect track boundaries. Point cloud color encodes height of the

point for ease of perception. 32

7.3 Simulated camera output for a sedan navigating a virtual replica of Park Street in Madison,

WI. Third-person view only for context. 32

7.4 Simulated lidar data for a sedan navigating a virtual replica of Park Street in Madison, WI.

Point cloud color encodes intensity and height for visual perception only. 33

vi

Abstract

This document contains the fnal project report for the SAFER-SIM project titled “Physics-Based Sensor

Models for Virtual Simulation of Connected and Autonomous Vehicles.” The report includes discussion of

sensors models for simulation autonomous vehicles, and overviews the simulation framework developed in

accordance with the project. The framework, called Chrono::Sensor is developed as a module alongside

Project Chrono to augment the open-source multi-physics engine with the capability to simulation

sensor data from within its virtual environment. Chrono::Sensor provides support for the modeling and

simulation of camera, lidar, GPS, and IMU. It also provides a framework to implement custom sensors

that can leverage existing sensor generation functionality. Chrono::Sensor generates data using ray-tracing

algorithms that mimic the data acquisition process of cameras and lidars. In addition to data collection,

the sensors support further data augmentation including the addition of sensor-specifc noise. Results

from each sensor implementation are included as part of the corresponding sensor discussion, with the

report concluding with two demonstrations showing the use of Chrono::Sensor, in combination with

Chrono, to simulate autonomous vehicles.

1

1. Introduction

Simulation promises to provide a safe and cost-e�ective means to train and evaluate perception and

navigation algorithms for operating connected autonomous vehicles. In order for these simulation

platforms to provide a comprehensive platform to conduct meaningful scenarios, the simulation tool must

be capable of providing realistic vehicle dynamics, providing vehicle-to-vehicle and vehicle-to-everything

communication, allowing for multiple interacting agents (vehicle, pedestrians, etc.), and providing realism

sensor data from within the virtual environment. To that end, this project has focused on developing,

implementing, and expanding a platform and models for physics-based simulation of sensors for training

and evaluating autonomous vehicles.

In order to comprehensively test the e �ectiveness and safety of perception and navigation algorithms,

it is important to provide, from within the virtual environment, synthetic data that is equivalent to data

that would be produced by a real sensor. The research conducted under this project sought to further

these e�orts by implementing a simulation framework that builds upon a high-fdelity multi-physics

simulation tool [3, 4, 5], implementing simulation methods that closely mimic the data acquisition process

of real sensors along with distortion and noise models that can augment ground truth data in an e�ort

to generate realistic sensor data with artifacts, noise, and distortion as would be seen on real sensors.

The importance of sensor simulation in the software-in-the-loop testing of a vehicle control stack is

illustrated in Figure 1.1 where the information of the world, known by the autonomous vehicle, is given

by sensors.

To contextualize the type and number of sensors, Table 1.1 lists the sensors used on a selection

of autonomous vehicles as of 2018. While additional sensors are part of continued work, the focus of

this project and report was on two interoceptive sensors (GPS and IMU) and two exteroceptive sensors

(camera and lidar). Interoceptive sensors give internal state information about the vehicle such as position,

velocity, acceleration, angular velocity, etc. Exteroceptive sensors provide information about a vehicle’s

surroundings and are heavily used in perception, obstacle avoidance, and path planning. Furthermore,

these sensors provide the ability to detect pedestrians in safety-critical scenarios.

 Company Lidars Radars Cameras IMUs

Waymo 1-LR, 1-MR, 4-SR 4 8 1

Uber 1-LR 4 7 1

Toyota 4-MR, 4-SR 4 9 1

GM Cruise 5-SR 8 16 1

Renault-Nissan 4 5 8 1

Baidu 1-LR, 3-SR 4 2 1

Navya 3-LR, 7-SR 4 6 1

2

Figure 1.1: The fow of data into and out of an autonomous control program is shown here. The control
stack is independent of whether the setup is virtual or physical, so sensing and dynamic response can
be simulated to understand autonomous behavior in highly confgurable environments (adapted from
Girardin [1]).

Table 1.1: Sensor confguration from a select set of AV companies shows the reliance on vision-based
sensing for autonomous behavior. Long-range (LR), medium-range (MR), and short-range (SR) lidar
along with cameras and radars are used heavily for object detection (adapted from Girardin [1]).

3

2. Chrono::Sensor
For autonomous vehicle simulation, sensor models must generate data that corresponds to the vehicle

dynamics and scene in which that vehicle is being simulated. To this end, Chrono::Sensor was developed

as a framework for implementing physics-based sensor models alongside simulation of vehicle dynamics

and dynamic scene evolution. Through a tight coupling, Chrono::Sensor can leverage the internal dynamic

state of an object from Chrono and use that, in part, to generate interoceptive data for GPS and IMU.

For exteroceptive sensors, Chrono::Sensor uses the dynamic simulation in Chrono to drive the scene

evolution to allow vehicles and other moving objects to be perceived as the vehicle interacts with the

virtual environment.

The tight integration between Chrono and Chrono::Sensor is illustrated in Figure 2.1. Here, the

virtual world from Chrono initializes the information for Chrono::Sensor. That data serves as ground

truth information and is augmented to incorporate e�ects from lag, fnite data collection time, noise,

distortion, and other sensor characteristics.

For sensors that rely solely on internal state information (IMU and reduced GPS model), Chrono::Sensor

stays in lock-step with the Chrono simulation. Since interoceptive sensors rely on data from many or most

time steps but have little data augmentation overhead, this lock-step simulation prevents unnecessary

overhead. For exteroceptive sensors such as camera and lidar, this is not the case. Since these sensors

perceive the virtual scene, a di�erent approach is implemented.

Excluding implementation details, two main factors impact the sensor models themselves. First, the

sensors need highly detailed information about the scene, which aligns with the type of visual assets

used in computer graphics. Second, a process that mimics the data acquisition of camera and lidar can

improve the model accuracy and simplicity. For these two reasons, a ray-tracing approach is used for

simulating camera and lidar. However, rather than implement a computer graphics pipeline based on

ray-tracing, the methods implemented as part of this SAFER-SIM project assume the primary purpose is

simulation, which allows the framework to be designed to focus on eÿciency and data-realism rather

than interaction and photo-realism.

For ray-tracing capabilities, Chrono::Sensor leverages the OptiX framework [6] which allows hardware

accelerated ray tracing [7] without interaction or required visualization. This improves the scalability

and model development. Additionally, since rendering is computationally time consuming and since

4

Figure 2.1: The connection between Chrono physics and Chrono::Sensor is tightly coupled, but is run at
di�erent time steps due to the small time step requirement of dynamics and the slow update frequencies
of most sensors. Virtual world state information is sent from Chrono to Chrono::Sensor with data returned
to the user at specifc, and user-defned frequencies and delays.

these sensors operate at lower frequency than the dynamic simulation (5-60 Hz vs 300-1000 Hz), the

rendering is done in parallel and synchronized when data should be returned to the user or when new

data generation starts. This still follows the illustration in Figure 2.1 but is not performed in lockstep.

The framework for simulating camera and lidar is implemented in a generic manner to allow for

extension and customization. Generically, these sensors are implemented using a flter graph with a

5

general sensor model shown in Figure 2.2. Each flter represents an operation on the data. In a generic

sense, the flter graph includes data generation using any ray-tracing or physics-based model given. That

generated data is subsequently processed by additional augmentation flters (i.e., noise addition), and

fnally a flter is applied to return the data to the user with a specifed amount of lag.

Figure 2.2: A general and typical example of flters that generate, augment, and return sensor data.

A concrete example is given in Figure 2.3, where a flter fowchart for a camera is illustrated. For this

example model, data is generated in OptiX using ray tracing. That data is then processed to antialias

the image, resize the image, add noise per pixel, apply gamma correction, introduce JPEG artifacts, and

return the image to the user with lag. The flter-graph process mimics sensing pipelines as detailed later

in the camera model discussion.

As an alternative approach, a deep neural network can be applied as one of the flters if the network

has been trained to introduce realistic artifacts. The flter fowchart representing this approach is shown

in Figure 2.4. The training and use of deep neural networks is a subject of further research into hybrid

physics-based and machine learning approaches for simulating sensors. This fell outside the scope of this

project.

In addition to model accuracy, solution eÿciency is an important aspect when simulating autonomous

vehicles. This is considered through the implementation of a separate render thread and library use. The

camera and lidar models implemented in this framework can make eÿcient use of hardware resources by

avoiding unnecessary bottlenecks. A typical camera or lidar flter implementation is processed entirely

on the graphics processing unit (GPU) with synchronization only occurring when virtual world state or

6

Figure 2.3: A concrete example of a possible setup for a camera sensor that generates an image using
ray tracing, anti aliases the image before resizing, applies multiple augmentation flters for noise and
distortion, and returns data to the user.

synthetic sensor data needs to be communicated. An example of this is illustrated in Figure 2.5 where

each flter, including data generation, is performed and limited to the GPU.

Since autonomous vehicles often incorporates tens of sensors and simulations can involve multiple

vehicles, the total number of sensors in a simulation can quickly balloon. In these cases, Chrono::Sensor

can make use of additional hardware resources such as multiple GPUs when running on a remote server.

The framework distributes the sensors among the GPUs to make eÿcient use of the resources available.

Sensors are divided between GPUs based on update frequency in order to reduce the number of total

scene updates as these points require synchronization between the physics simulation and the sensor

data generation. A possible division of sensors between GPUs is shown in Figure 2.6.

Chrono::Sensor currently supports camera, lidar, GPS, and IMU sensors with the ability to extend

and implement custom sensors using the existing framework. In addition to sensor-specifc parameters,

7

Figure 2.4: An advanced example that shows how Chrono::Sensor allows the use of a deep neural network
as a sensor data augmentation flter.

Figure 2.5: An example command process in Chrono/Chrono::Sensor shows the overlap of computation
made possible by eÿcient use of memory transactions and slower update rates in Chrono::sensor.

each sensor can be parameterized by update frequency, lag, and data collection time. The sensors can

then be attached to a body within the Chrono simulation for generating data. The sensor parameters

along with the collection of flter graphs represent a model of a specifc sensor.

8

Figure 2.6: The use of multiple GPUs can allow Chrono::Sensor to simulate many sensors in the same
environment by distributing sensors among di�erent GPUs. Currently, the framework attempts to place
sensors on GPUs by update frequency to lower the frequency of scene updates, which are the bottleneck
of the sensor framework.

9

3. Camera Modeling and Simulation

3.1 Camera Model Background

In order to model a camera to produce realistic synthetic image streams from a virtual environment that

are equivalent to real data produced by sensors on an autonomous agent, we must frst understand the

process by which physical camera sensors produce data. A diagram representing the steps is shown in

Figure 3.1 and described in the literature [8, 9].

Figure 3.1: Image pipeline that shows data acquisition from scene through to image output for perception.

For a physical sensor, the scene is independent of the camera but can have signifcant impact on image

processing due to varying atmospheric conditions and lighting. The light from the scene passes through

the optical system to focus larger quantities of photons on the image sensor. Because of this focusing,

light can be obtained from wider angles causing lens distortion, and imperfect material refections can

cause ghost artifacts called lens fare.

The image sensor, which measures photon intensity levels via an array of sensor pixels, incurs what

amounts to measurement error. With the measured values per pixel, the raw image is passed through an

image signal processor (ISP), which is on-device and can include operations such as demosaicking, color

balancing, and auto exposure, among others. The data is then compressed in image format, or more

commonly in autonomous applications, is encoded as video for streaming to a primary computational

resource for computer vision and perception tasks. Each of these processes must be modeled and

simulated in order to produce realistic sensor virtual data. These processes and their computational

equivalents are further described in the literature [8, 9].

Within the light acquisition process, lens systems, which are used to accumulate additional light,

often introduce distortion that can result in measured data that signifcantly di�ers from the ground

10

truth environment. These distortions include radial and tangential distortion, chromatic aberration,

vignetting, depth of feld, and lens fare. Radial and tangential distortion are non-uniform changes in the

direction of light paths commonly seen in wide-angle or fsh-eye lenses. With calibration and estimation,

these are often reduced in computer vision applications. Chromatic aberration is an e�ect caused by

wavelength-dependent refraction that creates a positional o�set of light and pixel colors. Vignetting is a

dimming of light near the edges of an image due to the aperture limiting the viewing angle of light to a

pixel. Depth of feld is the distance at which objects are in focus, with objects away from this distance

appearing blurry on the sensor. Lens fare can introduce ghost objects, often blurry regular-shaped light

patches stemming from undesired multi-path refections of intense light. Each of these distortions is

specifc to the sensor, lens system, and processing algorithms.

3.2 Camera Model Implementation

Generation of rendered data from OptiX is performed through custom ray-tracing kernels that implement

physically based materials. The custom implementation allows for balancing accuracy and performance

for the given application. Additionally, custom ray-tracing kernels also mean custom ray launch kernels,

allowing custom lens models to be implemented directly in the data generation step without needing

to introduce additional pre- or post-processing steps. The rendering step for the camera sensor is

parameterized by the update rate, image width, image height, horizontal feld of view (FOV), sensor

lag, exposure time, super-sampling factor for antialiasing, and lens type. The camera is also given an

object to which it is attached and a relative position and orientation for attachment. As part of this

project, the primary artifacts modeled in the camera simulation were wide-angle lens distortion and noise.

These can have signifcant impact on the quality of data that is available for perception. The lens type

parameter defnes the model to use for generating rays.

On the modeling of radial and tangential lens distortion, signifcant work found in literature has been

done both to recreate distortions as well as remove distortions from existing images. A summary of

classical models is given by Sturm et al. [10], overviewing approaches such as pinhole, fsh-eye, and

polynomial models. More recent models and techniques for improving distortion modeling are reviewed by

Tang et al. [11]. As part of this research, a wide-angle-lens model was implemented based on geometric

considerations of a single spherical lens. The model, known as the FOV model, is originally given by

11

tan(r1 tan(!))
r2 = , (3.1)tan !

where ! is the FOV, r1 is the undistorted radius, and r2 is the distorted radius. This model is based

purely on geometric considerations of a single spherical lens. While an estimate of the physical parameter

may suÿce, further calibration is often necessary.

In order to allow the model to be based on the camera’s horizontal FOV, and to enforce that the

resulting simulated FOV reproduces, exactly, the specifed feld of view, the implementation is modifed

to scale the distortion for consistency. Additionally, the distortion is used to modify ray directions rather

than modify pixel locations. The resulting model follows

r1 =
q

(x2
1 + y1

2)

tan(r1 tan(!))
r2 = tan !

tan(tan(!))
s = (3.2)tan !

x1r2
x2 =

r1s
y1r2

y2 = ,
r1s

where x1, y1 is the undistorted ray direction, x2, y2 is the distorted ray direction, ! is half the FOV, and

r1, r2 are intermediate calculations and correspond to the radius of distorted and undistorted directions.

The basic noise model that still represents true noise seen on image sensors comes from the EMVA

Standard [12] model, which specifes that pixel noise can be estimated and modeled as a pixel-dependent

Gaussian distribution expressed as

In(p) = I(p) + �, � ̆ N (0, ˙p
2)

(3.3)
˙2 = K2˙2 + ˙2 + K(µpp d q − µp,dark) ,

12

where In(p) is the intensity of the noisy pixel p; I(p) is the intensity of the ground truth; � is the

noise sampled from a normal distribution parameterized by ˙p which is a function of the sensor gain K,

the sensor readout noise ˙d, and the dark noise and shot noise which come from Poisson distributions

parameterized by µp,dark and µp respectively. This statistical model represents data collection illustrated

in Figure 3.2.

Figure 3.2: Noise model based on EMVA standard.

The original pixel-dependent model was modifed by Liu et al. [13] to account for a plausible local

spatial and chromatic correlation by approximating the e�ect of demosaicking. The resulting model

follows:

I = f(L + �s + �c) + �q

�s ˘ N (0, L˙s
2) (3.4)

�c ˘ N (0, ˙2) ,c

where I is the noisy image, f is the camera response function (CRF), L is the photon intensity, and

˙c and ˙s are tunable parameters. In order to convert the clean image to photon intensity, the inverse

camera response function is applied.

Chrono::Sensor provides several implementations of image noise proposed in the literature. As many of

the higher-fdelity image-denoising methods are computationally expensive or require diÿcult-to-estimate

parameters, two basic solutions are provided as initial models for the camera sensor. The frst, which is

often insuÿcient in image denoising but may be useful in some perception applications when training

for robustness, is additive white Gaussian noise. This noise is sampled independently from a Gaussian

13

distribution whose parameters are constant across all pixels. The second model, which is based on the

standard model and subsequent augmentations found in the literature [12, 13, 14, 15, 16], is written as

I = L + �
(3.5)

� ̆ N (0, L˙1
2 + ˙2

2) ,

where I is the noisy pixel, L is the ground truth pixel value, and ˙1 and ˙2 parameterize the distribution

dependent on the pixel intensity L. The parameters ˙1 and ˙2 can be estimated for a given camera by

using mean removal of noise and estimating noise magnitude based on correlation with intensity. Further

model enhancements are in development, including additional ISP modules such as gamma correction

and compression artifacts.

3.3 Camera Simulation Results

To demonstrate lens distortion, which can have a signifcant impact on the information perceived through

a camera sensor, particularly for wide angle lenses, the FOV model defned in Eq. 3.1 was used. The

target camera is an ELP 2 megapixel camera with a 2.1 mm lens. The lens has an FOV of 1.408 radians

(80.7°). The FOV model, which is derived from geometric considerations, uses ! = 1.408/2 = 0.704.

The results from Chrono::Sensor are shown in Figure 3.3 with an undistorted version on the left, and

a distorted version on the right. Further work stemming from this research will look into validating this

model and understanding the errors and their impact on realism.

In addition to demonstrated distortion, a qualitative comparison of the camera noise models is made

based on empirical image noise. Using the Smartphone Image Denoising Dataset (SIDD) [17], noisy and

clean image pairs can be used to estimate noise distributions. While often used for training denoising

algorithms, these pairs are used in this demonstration to estimate noise levels and introduce artifcial

noise to synthetic images.

For the additive white Gaussian noise (AWGN) model, the standard deviation, assuming identically

distributed Gaussian noise, can be estimated by subtracting the clean image from the noisy image and

14

(a) Undistorted image using a pin-hole camera model. (b) Distorted image using a modifed feld of view model
with single physics-based input parameter.

Figure 3.3: A comparison of undistorted and distorted images using pinhole and FOV models. The
distortion seeks to replicate an ELP 2MP camera with a 2.1 mm lens and ˘80° FOV.

calculating the standard deviation. The AWGN that best approximated the empirical noise had a standard

deviation of 0.0093 for images in the range of 0 to 1.

For the intensity-dependent model, the parameters are obtained by binning the pixels based on

intensity. The standard deviation for each intensity can then be estimated, and a regression will yield a

linear relationship between variance and intensity. For the sample images, the linear regression yielded

a relationship of ˙2 = 0.03252I + 0.006272. The correlation is shown in Figure 3.4. The standard

deviations were calculated using 143.8 million noisy pixel values in the linear RGB space as true image

noise is measured at the image sensor (RAW image).

Sample noisy images based on the estimated parameters are shown in Figure 3.5. The simulated

images are generated at the same resolution as the real data for ease of comparison. Since the images

are obtained at high resolution and down-scaling distorts noise, a zoomed comparison is given in Figure

3.6, where individual pixels are visible. While the standard model cannot account for spatial, chromatic,

and temporal correlation, the dataset used has little compression or post-processing, resulting in a more

representative domain for the standard model. Even so, the simulated images have noticeably fner noise

than the real image. In autonomous vehicles applications, further research is needed to understand the

level of fdelity required from the noise model for meaningful simulations. In addition, further comparisons

(a) Additive white Gaussian noise,
˙ = 0.0093.

(b) Intensity-dependent Gaussian
noise, ˙2 = 0.03252I + 0.006272.

(c) Real image noise example from
SIDD.

15

Figure 3.4: Correlation between variance and color intensity in linear images from SIDD.

between the noise models are needed, and validation will require implementation of additional ISP

modules and improvement of the scene similarity to remove compounding e�ects.

Figure 3.5: Comparison of full-resolution noisy images.

The underestimation of noise due to assuming AWGN is explained by the majority of pixels having

low intensity. This means that since there is a correlation, the AWGN assumption was a low estimate and

exposed the weaknesses in the identical distribution assumption. Only visual comparison can be made

at this time, with the standard model appearing to be closer to reality. While correlation components

16

are known to be missing, realism benchmarks are needed to understand the usefulness of each of these

models in simulations for evaluating autonomous navigation and perception.

(a) Additive white Gaussian noise,
˙ = 0.0093.

(b) Intensity-dependent Gaussian
noise, ˙ = 0.0499I + 0.00666.

(c) Real image noise example from
SIDD.

Figure 3.6: Comparison of a small section of noisy images illustrating di�erences in model assumption.

In addition to model accuracy, performance and scaling results are important to understand the

support for simulating many vehicles and sensors.

As the addition of image noise requires random sampling from unique distributions, it is important

to understand the performance impact of the noise model. A scaling analysis was conducted to compare

the generation of noised and un-noised images. The analysis was performed on an Nvidia RTX 2080ti

GPU for a camera operating at 30 Hz within a simulated scene that included the ColorChecker [18]

pattern. Figure 3.7 shows the increase in wall time needed to perform 10 seconds of simulation with

increasing image size. While the noisy images often require additional computation time, the impact is

negligible and independent of scene complexity.

Since the ray-tracing algorithm is computationally complex, it is also important to contextualize the

performance of the simulation when the camera takes higher resolution or, analogously, multiple samples

are used per image pixel for super-sampling. Since the implemented super-sampling algorithm requires

an image-reduction step, both scaling studies are provided and can be seen in Figures 3.8 and 3.9. All

simulations were run for 10 simulation seconds with the wall time required to complete the simulation

recorded. Each simulation included a single high-resolution visualization mesh with 173k triangles. For

super-sampling, the image resolution was fxed at 640x360 to match the total samples from the image

size scaling.

17

Figure 3.7: Scaling of a single camera with and without noise shows little impact of noise augmentation
on simulation performance. Confguration: 16x9 camera aspect ratio, 30 Hz update frequency, 10 seconds
of simulation time, color calibration object scene, RTX 2080ti GPU.

Figure 3.8: Scaling of a single camera shows the performance impact of increasing image size. Confgu-
ration: 16x9 camera aspect ratio, 30 Hz update frequency, 10 seconds of simulation time, 173k triangle
scene, RTX 2080ti GPU.

The fnal performance results for camera simulation shown here are for inclusion of multiple cameras

in the simulation. Each camera had a resolution of 1280x720 with a 30 Hz update rate. The scene was

18

Figure 3.9: Scaling of per-pixel samples for a single camera shows impact of super-sampling on simulation
performance. Confguration: 640x360 resolution, 30 Hz update frequency, 10 seconds of simulation time,
173k triangle scene, RTX 2080ti GPU.

a single high-resolution mesh with a duration of 10 simulation seconds. The results in Figure 3.10 show

the computation time required for including additional cameras. The scaling included up to 256 cameras

on an RTX 2080ti.

Figure 3.10: Scaling of cameras in a single scene shows the capability and performance impact of many
cameras. Confguration: 1280x720 resolution, 30 Hz update frequency, 10 seconds of simulation time,
173k triangle scene, RTX 2080ti GPU.

19

4. Lidar Modeling and Simulation

4.1 Lidar Model Background

Since lidar plays a key role in perception and planning algorithms, the lidar must model accurate beam

returns in the highly complex virtual environments used for testing and training autonomous navigation.

As automotive and robotic applications often rely on long-range and relatively low-cost lidar, beam

divergence plays a signifcant role in the collected data. Tightly coupled with beam divergence, the power

distribution across the beam spot is often modeled using a Gaussian distribution [19], adding complexity

to a simulated sensor. In addition, since the lidar beam spot grows over distance, methods have been

implemented on-chip to utilize the beam spread to compute specifc or multiple returns (i.e., frst return,

last return, strongest return, frst and strongest, etc.) [2]. The interplay between beam spread and return

type is illustrated in Figures 4.1 and 4.2, where return type can result in di�erence data when multiple

objects are refected.

Figure 4.1: Multiple or partial return phenomena utilized by lidar to detect multiple objects per beam. In
this example, the strongest return will also be the frst return. Modifed from velodynelidar.com [2].

https://velodynelidar.com

20

Figure 4.2: Multiple or partial return phenomena utilized by lidar to detect multiple objects per beam. In
this example, the strongest return will also be the last return. Modifed from velodynelidar.com [2].

4.2 Lidar Model Implementation

For generating lidar data, the same ray-tracing methodology used in the camera sensor is applied, but

because complete control is allowed over the material and the ray launch algorithm, the lidar implements

its own rendering options. For materials, the encoded value is defned to be the intensity of the return

from the direction of the ray. For ray launch, a vertical and horizontal angle is measured, alleviating all

FOV issues associated with a traditional rendering plane. The lidar rays are then traced in the lidar-specifc

space, ignoring all parameters and materials associated with the camera. In this way, materials that

depend on specifc lidar wavelengths could be implemented. This is a source of potential expansion and

research as little work regarding lidar-wavelength-specifc materials can be found in the literature.

The Chrono::Sensor lidar is parameterized by update rate, width and height of the samples in a frame,

horizontal and vertical FOV, sensor lag, data collection time, number of samples to use per beam, the

beam divergence angle that is used for multiple returns, the return mode when multiple objects are seen,

and the method for generation, which defaults to ray cast with potential for expansion to additional

path-tracing models. The lidar can also be attached to an object in the Chrono simulation and can be

mounted with a relative position and orientation to match the corresponding mounting confguration of

a real lidar on a vehicle.

https://velodynelidar.com

21

In accounting for multiple returns, a beam discretization model based on work by Goodin et al. [20] is

extended in Chrono::Sensor. This leverages the ray-tracing algorithm to discretize the beam for each lidar

ray. The beam discretization is parameterized based on the width of the beam, in number of samples,

and the angle of divergence.

The original model upon which this implementation was based was shown to produce plausible results

in complex grassy scenery [20]. Figure 4.3 illustrates the sampling of a rectangular beam pattern. A

similar, but computationally intensive, discretization is discussed by Yin et al. [21] where multiple laser

pulses are simulated, with each return modeled as a Gaussian distribution with approximated mean and

standard deviation based on the return distance and material back scattering.

Figure 4.3: Sampling pattern for discrete lidar beam simulation. The discretization is parameterized by
the beam divergence angle and the width in samples of the beam.

The current state of the art limits the sampling resolution to nine samples per beam to estimate a

return pattern. As demonstrated here, nine samples provides a crude estimate of intensity for strongest

return, but is a signifcant improvement from the single-ray beam approximation used in many game-

engine-based simulators. That may in part help explain the apparently large realism gap with synthetic

lidar data in combination with limited scene realism.

The implemented model uses the rectangular beam approximation illustrated in Figure 4.3. Augmenting

work found in literature, this implementation parameterizes the model by the sample radius such that

the discretization can be increased as part of the model.

The lidar noise model is implemented as a Gaussian distribution with independently parameterized

distributions applied to range, intensity, vertical angle, and horizontal angle. The noise is applied directly

to the raw measurements (range and intensity) rather than being applied to the processed point cloud.

22

This is critical since generation of a point cloud (x,y,z,intensity) is a post-processing step in lidar sensors.

As noise from a real sensor is made at the time of measurement, the simulated lidar is implemented in

the same order. The parameters for the distributions are user-defned and would need to be estimated

from lidar data, or found in a data sheet.

4.3 Lidar Simulation Results

To demonstrate the lidar implementation, a comparison between beam discretization options is given

below. Here, one, nine, and 81 samples are used to sample a single lidar beam. The one-sample case

corresponds to most game-based simulation solutions; the nine-sample case corresponds to the state of

the art found in the work by Goodin et al. [20]. To study the impact of multiple returns on a simulated

point cloud, a single lidar beam is simulated, and a scenario is created that will force multiple returns.

The scenario includes two walls at di�erent distances that slide together in front of the lidar beam. The

beam spot relative to the gap between the walls serves as the independent variable in the simulated

experiment. The two walls are 50 and 60 m away from the lidar. The beam spot, based on the HDL-32E

lidar with 3 mrad divergence [2] results in a beam spot width of 15 cm at 50 m. The setup is illustrated

in Figure 4.4.

Figure 4.4: Setup for beam divergence and sampling discretization test.

23

As the gap in the wall slides past the beam spot, the range based on strongest return (only return

for single ray) and intensity are plotted. The range in Figure 4.5a, shows the same behavior for each

method as expected since the range will shift at the same position relative to the wall. The intensity in

Figure 4.5b shows signifcant di�erence due to the sampling size. The expected strongest return should

result in a relative intensity of 0.5 (neglecting power loss over distance and assuming perfect refectance).

The single ray will return full power since the wall is perpendicular to the ray and one wall is seen at each

position. The nine-sample beam experiences a dip in power as the beam transitions from one wall to the

other, but does so in a coarse manner as the beam only provides three samples in the lateral direction.

The 81-sample beam, which has nine samples in the lateral direction, results in a fne discretization of

intensity, nearly reaching the expected lower relative intensity of 0.5.

(a) Beam sampling shows no e�ect of wall-gap multi
return scenario, but would have signifcant impact
when simulating lidar in fne scene regions such as
fences and vegetation.

(b) Even for the simple comparison of an o�set wall,
beam intensity is signifcantly impacted by beam
sampling and divergence.

Figure 4.5: Comparison of sampling in the beam divergence model and its impact on returned range and
intensity for a single beam with two o�set walls at 50 and 60 m. Both walls are assumed to have perfect
refectance, and power dissipation is neglected.

This work shows that there is signifcant room for improvement in the beam divergence model,

particularly by harnessing recent hardware advances in ray tracing. Future work should focus on

understanding the impact of beam divergence on data realism and introduce a model that provides

a signifcant level of realism without an excessive level of computational burden. Along with beam

24

divergence, power dissipation and scattering will be included in such a model so that the relative intensity

provides a close match to reality.

Since higher accuracy can be obtained for higher-sample lidars, the scaling in Figure 4.6 shows the

computation time for increasing the number of samples per lidar. Since the reduction time for samples

per beam is low, the performance for samples per beam and beams per scan are nearly equivalent given

the same total number of rays launched by the ray-tracing algorithm. The results in Figure 4.6 give the

overall impression of increasing the ray count for a lidar in Chrono::Sensor.

Figure 4.6: Scaling of rays for a single lidar showing the potential for increasing the resolution of
a multi-sampled beams or many-beam lidars. Confguration: 5Hz update frequency, 10 seconds of
simulation time, 173k triangle scene, RTX 2080ti GPU.

To show the performance burden for increasing the number of lidars in a simulation, a scaling analysis

is shown in Figure 4.7. The number of lidars is increased from 1 to 256 with the time required to perform

10 seconds of simulation shown for each confguration. The scene includes the high-resolution mesh

described previously. The update frequency of the lidar is set to 5 Hz, which is within the operating

range of a Velodyne HDL-32E.

25

Figure 4.7: Scaling of lidar in a single scene shows the capability and performance impact of simulating
many lidars. Confguration: resolution: 3800x48, 5Hz update frequency, 10 seconds of simulation time,
173k triangle scene, RTX 2080ti GPU.

26

5. GPS Modeling and Simulation

The Global Positioning System (GPS) is a localization instrument that allows robots and autonomous

vehicles to pinpoint their location. The receiver listens to signals broadcast from GPS satellites to

compute its own location. The receiver uses orbital and time information from the satellite to compute a

distance to the satellite and through trilateration can pinpoint its own coordinates in space. This process

is illustrated in Figure 5.1 for the two-dimensional case.

Figure 5.1: Illustration of two-dimensional GPS trilateration.

In three dimensions, a distance to a single satellite places the receiver on the surface of a sphere with

radius equal to this distance. With a second satellite, the location is restricted to a circle in space. With

a third satellite, this is narrowed to two points in space. With an assumption of interior or exterior point,

these three satellites can be enough to pinpoint a location, although four satellites is the minimum, with

no assumptions, to guarantee a known location.

The GPS model in Chrono::Sensor is parameterized based on the update rate, the sensor lag, the

collection window, a reference GPS location for the origin of the simulation, and a desired noise model.

27

The sensor is then attached to a Chrono body with a relative position and orientation. Since the receiver

orientation is irrelevant, the orientation component of relative attachment is ignored.

In Chrono::Sensor, GPS ground truth information is generated using a combination of the positional

state of the object to which the sensor is attached, and the relative position of attachment. Because a

GPS often has a low update rate and high lag, the positional data from the simulation is averaged over

the specifed data collection window before introducing noise. Once noise is applied, the data is held and

only provided to the user once the lag time has elapsed. This model of lag is applicable to all sensors

in Chrono. Using the GPS reference location and a spherical mapping from simulation coordinates to

global coordinates, the modeled position is converted to latitude, longitude, and altitude. Importantly,

the noise model is applied before conversion to enforce non-distorted distributions when simulating far

from the equator.

The current GPS noise model uses independent Gaussian distributions parameterized independently

for latitude, longitude, and altitude. Although higher complexity models exist that account for GPS lock

and satellite visibility [22], many modern GPS combine information from an IMU, additional satellites,

and complex fltering algorithms to considerably reduce noise. While noise still exists, it is often distorted

beyond the modeling capability shown by Balaguer and Carpin [22]. The principle of tracking satellite

positions to calculate visibility is also shown by Durst and Goodin [23] where paths from the receiver

to satellite are traced. Then, based on the distances, noise models accounting for atmospheric e�ects,

including viewing angle through the atmosphere, can be included. This high-fdelity model then performs

a generic trilateration algorithm to mimic the error from conficting satellite information. This introduces

signifcant modeling complexity if receiver parameters and algorithms are unknown. Further work needs

to be done to study the realism of the model presented by Durst and Goodin [23] compared to the highly

accurate and fltered GPS used in automotive applications.

28

6. IMU Modeling and Simulation

An Inertial Measurement Unit (IMU) is commonly included on autonomous vehicles to assist in pose

estimation. These sensors most commonly include a gyroscope and accelerometer, but can also include

magnetometer. Currently, the accelerometer and gyroscope are included in the IMU implementation,

with further work being done to include a magnetometer with noise and drift. An accelerometer returns

a local translational acceleration in three directions. The acceleration is relative to free-fall, meaning

zero acceleration is returned only if there are no forces acting on the sensor. A gyroscope measures an

angular velocity about the three local axes.

The implemented IMU is parameterized by the update rate, the sensor lag, a data collection window,

and a noise model. The ground truth data is calculated using internal state information from the Chrono

body to which the sensor is attached and the relative attachment position and orientation. The ground

truth data from Chrono is averaged over the data collection window, augmented with noise, and provided

to the user after a period of time defned by the sensor lag.

The IMU noise model implemented in Chrono::Sensor is based on work by Shah et al. [24] which

showed promising results for recreating accelerometer and gyroscope noise using a Gaussian model with

drifting parameters. The noise model for the gyroscope is given by,

!output = ! + �a + bt, �a ˘ N(0, ra) s (6.1)
bt = bt−1 + �b, �b ˘ N(0, b0

dt) ,
ta

where !output is the gyroscope reading and ! is the ground truth angular velocity relative to the sensor.

Noise variance ra, bias b0, and time constant ta are user-defned parameters; �a and �b are random

variables, sampled from a Gaussian distribution as parameterized above, accounting for variation in noise

and bias drift [24].

Accelerometer noise follows a similar distribution, but the raw data calculation must account for

gravity:

29

aoutput = (a − g) + �a + bt, �a ˘ N(0, ra) s (6.2)
bt = bt−1 + �b, �b ˘ N(0, b0

dt) ,
ta

where aoutput is the accelerometer reading, a is the ground truth translational acceleration of the sensor,

g is the gravitational acceleration, and dt is the update period. Noise variance ra, bias b0, and time

constant ta are user-defned parameters; �a and �b are random variables, sampled from a Gaussian

distribution as parameterized above, accounting for variation in noise and bias drift [24]. The current

model could be expanded as shown by Durst and Goodin [23] to implement an approach that additionally

incorporates the e�ect of temperature on the sensor noise. Chrono::Sensor allows for this expansion by

implementing a custom sensor that can use the same framework for generating sensor data and applying

augmentation flters.

Simulated IMU results are shown for a stationary sensor, equivalent to an IMU resting on a table.

The virtual sensor noise is set with accelerometer parameters: ra = 0.0075, b0 = 0.001, and ta = 0.1,

and gyroscope parameters: ra = 0.001, b0 = 0.0, ta = 0.0. The stationary results are compared to

results from a stationary mobile phone accelerometer and gyroscope. This is not a validation study, and

the mobile sensor deviates from automotive sensors due to calibration and lack of fltering, but shows

example data generated by Chrono::Sensor. The comparison in Figure 6.1 shows example noise for a

single channel of an accelerometer and gyroscope. The simulated data is plotted alongside the real data

for visual comparison to see the quality of the data, not to show validation.

30

Figure 6.1: Demonstration and qualitative comparison of accelerometer and gyroscope noise between
simulation and real IMU.

31

7. Demonstration of Technology

Two examples are discussed next to demonstrate the Chrono::Sensor platform. The frst example shows

a use for evaluating a navigation algorithm, and the second shows a demonstration of capability in a

replica virtual environment.

For demonstrating evaluation, a scaled autonomous vehicle was placed in a closed track to evaluate the

e�ectiveness of a lidar-only navigation strategy. The strategy used the simulated lidar in Chrono::Sensor

to detect the track boundaries and generate a safe pathway between these clusters. The vehicle was able

to safely navigate the previously unseen track. The camera output from the demonstration can be seen

in Figure 7.1 shows an RGB third-person view and a greyscale frst-person view from the front of the

vehicle. The lidar output, which was used in the navigation algorithm, can be seen in Figure 7.2.

(a) Third-person view of scaled vehicle on closed
track.

(b) Grey-scale image from on-board camera
mounted to the scaled autonomous vehicle.

Figure 7.1: Simulated images from a demonstration of a scaled autonomous vehicle navigating a closed
track using lidar to detect track boundaries.

As an on-road scenario example, we provide a second demonstration using a virtual reconstruction

of Park Street in Madison, WI, courtesy of Continental Mapping [25]. The demonstration shows the

simulated camera output in Figure 7.3.

Simulated lidar, based on a virtual roof-mounted lidar with parameters representative of widely used

automotive lidar [2], is shown in Figure 7.4. Figure 7.4a shows a three-dimensional rendering of the

generated point cloud including details such as trees and buildings from the virtual environment. Figure

7.4b shows a top-down view of the simulated point cloud illustrating the sensor’s inclusion of roadways

and building outlines.

32

(a) (b)

Figure 7.2: Simulated point clouds from a demonstration of a scaled autonomous vehicle navigating a
closed track using lidar to detect track boundaries. Point cloud color encodes height of the point for
ease of perception.

(a) Hood-mounted camera (b) Third-person camera

Figure 7.3: Simulated camera output for a sedan navigating a virtual replica of Park Street in Madison,
WI. Third-person view only for context.

33

(a) Three-dimensional view of rendered point cloud. (b) Birds-eye view of simulated point cloud.

Figure 7.4: Simulated lidar data for a sedan navigating a virtual replica of Park Street in Madison, WI.
Point cloud color encodes intensity and height for visual perception only.

34

8. Conclusions

As part of this SAFER-SIM project, we established a simulation framework for modeling and simulating

sensors for training and evaluation of autonomous vehicles. The simulation framework leverages Chrono

for generating ground truth dynamic data for interoceptive sensors. For exteroceptive sensors, the

scene evolution is driven by the dynamics in Chrono and includes vehicle dynamics and contact. With

Chrono::Sensor, users can add virtual sensors to existing simulations to train and evaluate algorithms for

perception and navigation by incorporating the algorithm in a software-in-the-loop virtual test.

Currently supported sensors include camera, lidar, GPS, and IMU with the capability for a user to

extend and implement a custom sensor that can leverage all existing components of the framework. Each

sensor includes parameters to defne the data collection and augmentation process. The camera and lidar

sensors leverage hardware-accelerated ray tracing that allows for custom implementation of materials

(for camera, lidar, or custom sensor), and eÿcient scaling and data augmentation. Each sensor model

accounts for noise with varying levels of sophistication.

8.1 Outcomes

Outcome performance measures:

• We produced an open-source sensor simulation framework for autonomous vehicle simulation called

Chrono::Sensor. This code will be provided alongside the open-source Project Chrono. Both

Chrono and Chrono::Sensor are developed/augmented by the Simulation Based Engineering Lab at

the University of Wisconsin-Madison.

• Chrono::Sensor is and will continue to be used in further work involving the research and development

of a multi-agent connected autonomous vehicle simulator.

• Chrono::Sensor will be augmented and used in related research on improving and understanding

sensor realism for reducing the simulation to reality gap.

• This project was the basis of a successful Ph.D. Preliminary Examination in May 2020.

• Chrono::Sensor is the subject of fve conference presentations and submissions, one journal publica-

tion, and two pending journal submissions. [26, 27, 28]

35

8.2 Impacts

This research and the subsequent sensor simulation framework could make a di�erence by allowing

researchers to better understand the safety of autonomous vehicles, improve autonomous vehicle perception

and navigation, and demonstrate the capability of algorithms in safety-critical scenarios to the public at

large. Specifcally, the technology associated with this SAFER-SIM project, and the broader software to

which this module belongs, is designed with the following intent:

• Allow researchers to better understand and improve the safety of autonomous vehicles by facilitating

numerous iterative simulations in safety-critical scenarios.

• Allow for the understanding and demonstration of vehicle safety and capability for the public at

large.

8.3 Future Work

We are in the process of:

• releasing the platform as open source by the end of summer 2020

• making further improvements to the simulation framework

• making further improvements to the sensor models

• providing support for additional sensors

• researching additional methods/models for sensor simulation

Chrono::Sensor is still in development and will be made public in the coming weeks. It will be released

as a module in the open-source multi-physics simulation platform, Project Chrono [29]. The initial

framework and models in Chrono::Sensor were made possible through this SAFER-SIM project, and

the framework will be expanded as part of a Ph.D thesis. Future work centers around expanding the

supported sensors to include a broader set of automotive sensors including radar, odometer, encoders, etc.

Additionally, prepackaged solutions that represent commonly used sensors will be provided for ease of use.

36

Further research will also focus on benchmarking the realism of the current noise and distortion models,

and seeking to develop new models where the current solutions fail to provide satisfactory realism.

37

Bibliography
[1] G. Girardin, “Road to robots. sensors and computing for autonomous vehicle,” in Autonomous

Vehicle Sensors Conference, 2018.

[2] “Velodyne lidar.” http://velodynelidar.com/, 2018. Accessed: 2020-04-17.

[3] Project Chrono, “Chrono: An Open Source Framework for the Physics-Based Simulation of Dynamic
Systems.” http://projectchrono.org, 2020. Accessed: 2020-03-03.

[4] A. Tasora, R. Serban, H. Mazhar, A. Pazouki, D. Melanz, J. Fleischmann, M. Taylor, H. Sugiyama,
and D. Negrut, “Chrono: An open source multi-physics dynamics engine,” in High Performance
Computing in Science and Engineering – Lecture Notes in Computer Science (T. Kozubek, ed.),
pp. 19–49, Springer, 2016.

[5] R. Serban, M. Taylor, D. Negrut, and A. Tasora, “Chrono::Vehicle Template-Based Ground Vehicle
Modeling and Simulation,” Intl. J. Veh. Performance, vol. 5, no. 1, pp. 18–39, 2019.

[6] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke, D. McAllister, M. McGuire,
K. Morley, A. Robison, and M. Stich, “OptiX: A general purpose ray tracing engine,” ACM
Transactions on Graphics, August 2010.

[7] NVIDIA Corporation, “NVIDIA Turing GPU Architecture,” 2018. WP-09183-001 v01.

[8] J. E. Farrell, P. B. Catrysse, and B. A. Wandell, “Digital camera simulation,” Applied Optics,
vol. 51, no. 4, pp. A80–A90, 2012.

[9] J. E. Farrell and B. A. Wandell, “Image systems simulation,” Handbook of Digital Imaging, pp. 1–28,
2015.

[10] P. Sturm, S. Ramalingam, J.-P. Tardif, S. Gasparini, J. Barreto, et al., “Camera models and
fundamental concepts used in geometric computer vision,” Foundations and Trends ® in Computer
Graphics and Vision, vol. 6, no. 1–2, pp. 1–183, 2011.

[11] Z. Tang, R. G. von Gioi, P. Monasse, and J.-M. Morel, “A precision analysis of camera distortion
models,” IEEE Transactions on Image Processing, vol. 26, no. 6, pp. 2694–2704, 2017.

[12] EMVA Standard, “Standard for characterization of image sensors and cameras,” European Machine
Vision Association, vol. 3, 2010.

[13] C. Liu, R. Szeliski, S. B. Kang, C. L. Zitnick, and W. T. Freeman, “Automatic estimation
and removal of noise from a single image,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 30, no. 2, pp. 299–314, 2008.

[14] S. W. Hasino�, F. Durand, and W. T. Freeman, “Noise-optimal capture for high dynamic range
photography,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on,
pp. 553–560, IEEE, 2010.

[15] S. Guo, Z. Yan, K. Zhang, W. Zuo, and L. Zhang, “Toward convolutional blind denoising of real
photographs,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1712–1722, 2019.

http://velodynelidar.com/
http://projectchrono.org

38 BIBLIOGRAPHY

[16] R. Jaroensri, C. Biscarrat, M. Aittala, and F. Durand, “Generating training data for denoising real
rgb images via camera pipeline simulation,” arXiv preprint arXiv:1904.08825, 2019.

[17] A. Abdelhamed, S. Lin, and M. S. Brown, “A high-quality denoising dataset for smartphone
cameras,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[18] D. Pascale, “RGB coordinates of the Macbeth ColorChecker,” The BabelColor Company, vol. 6,
2006.

[19] F. Castaño, G. Beruvides, A. Villalonga, and R. E. Haber, “Computational intelligence for simulating
a lidar sensor,” in Sensor Systems Simulations, pp. 149–178, Springer, 2020.

[20] C. Goodin, M. Doude, C. Hudson, and D. Carruth, “Enabling o�-road autonomous navigation-
simulation of lidar in dense vegetation,” Electronics, vol. 7, no. 9, p. 154, 2018.

[21] T. Yin, J. Qi, J.-P. Gastellu-Etchegorry, S. Wei, B. D. Cook, and D. C. Morton, “Gaussian
decomposition of lidar waveform data simulated by dart,” in IGARSS 2018-2018 IEEE International
Geoscience and Remote Sensing Symposium, pp. 4300–4303, IEEE, 2018.

[22] B. Balaguer and S. Carpin, “Where Am I? A Simulated GPS Sensor for Outdoor Robotic Applications,”
in International Conference on Simulation, Modeling, and Programming for Autonomous Robots,
pp. 222–233, Springer, 2008.

[23] P. J. Durst and C. Goodin, “High fdelity modelling and simulation of inertial sensors commonly
used by autonomous mobile robots,” World Journal of Modelling and Simulation, vol. 8, no. 3,
pp. 172–184, 2012.

[24] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fdelity visual and physical simulation for
autonomous vehicles,” in Field and service robotics, pp. 621–635, Springer, 2018.

[25] “Continental Mapping.” https://www.continentalmapping.com/, 2019. Accessed: 2019-04-19.

[26] D. Negrut, R. Serban, A. Elmquist, J. Taves, A. Young, A. Tasora, and S. Benatti, “Enabling
artifcial intelligence studies in o�-road mobility through physics-based simulation of multi-agent
scenarios,” in Proceedings of Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS), Aug. 2020.

[27] A. Elmquist, D. Hatch, R. Serban, D. Noyce, and D. Negrut, “Sensing simulation for the virtual
testing of autonomous vehicle safety and performance,” in Proceedings of Road Safety and Simulation
Conference, Oct. 2019.

[28] A. Elmquist and D. Negrut, “Methods and models for simulating autonomous vehicle sensors,” IEEE
Transactions on Intelligent Vehicles, pp. 1–1, 2020.

[29] Project Chrono, “ProjectChrono API Web Page.” http://api.projectchrono.org/. Accessed:
2017-10-20.

https://www.continentalmapping.com/
http://api.projectchrono.org/

	Structure Bookmarks
	Physics-Based Sensor Models for Virtual Simulation of Connected and Autonomous Vehicles
	Figure
	Dan Negrut, PhD Radu Serban, PhD Professor Senior Scientist Department of Mechanical Engineering Department of Mechanical Engineering University of Wisconsin-Madison University of Wisconsin-Madison
	Physics-Based Sensor Models for Virtual Simulation of Connected and Autonomous Vehicles
	Dan Negrut, PhD Professor Department of Mechanical Engineering University of Wisconsin-Madison
	https://orcid.org/0000-0003-1565-2784
	https://orcid.org/0000-0003-1565-2784
	https://orcid.org/0000-0003-1565-2784

	Radu Serban, PhD Senior Scientist Department of Mechanical Engineering University of Wisconsin-Madison
	https://orcid.org/0000-0002-4219-905X
	https://orcid.org/0000-0002-4219-905X
	https://orcid.org/0000-0002-4219-905X

	Asher Elmquist Graduate Research Assistant Department of Mechanical Engineering University of Wisconsin-Madison
	https://orcid.org/0000-0002-0142-1865
	https://orcid.org/0000-0002-0142-1865
	https://orcid.org/0000-0002-0142-1865

	A Report on Research Sponsored by
	SAFER-SIM University Transportation Center Federal Grant No: 69A3551747131
	May 2020
	DISCLAIMER
	The contents of this report refect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated in the interest of information exchange. The report is funded, partially or entirely, by a grant from the U.S. Department of Transportation’s University Transportation Centers Program. However, the U.S. Government assumes no liability for the contents or use thereof.
	Table of Contents
	Table of Contents
	Table of Contents
	Table of Contents

	..
	i

	List of Figures
	List of Figures
	List of Figures

	..
	iii

	Abstract
	Abstract
	Abstract

	...
	vi

	1
	1
	Introduction
	Introduction

	...
	1

	2 Chrono
	2 Chrono
	2 Chrono

	::Sensor
	..
	3

	3
	3
	Camera Modeling and Simulation
	Camera Modeling and Simulation

	9

	3.1
	3.1
	CameraModelBackground
	CameraModelBackground

	9

	3.2
	3.2
	CameraModelImplementation
	CameraModelImplementation

	10

	3.3
	3.3
	CameraSimulationResults
	CameraSimulationResults

	13

	4
	4
	Lidar Modeling and Simulation
	Lidar Modeling and Simulation

	19

	4.1
	4.1
	Lidar ModelBackground
	Lidar ModelBackground

	19

	4.2
	4.2
	Lidar ModelImplementation
	Lidar ModelImplementation

	20

	4.3
	4.3
	Lidar SimulationResults
	Lidar SimulationResults

	22

	5
	5
	GPS Modeling and Simulation
	GPS Modeling and Simulation

	26

	6
	6
	IMU Modeling and Simulation
	IMU Modeling and Simulation

	28

	7
	7
	Demonstration of Technology
	Demonstration of Technology

	31

	8
	8
	Conclusions
	Conclusions

	..
	34

	8.1
	8.1
	Outcomes
	Outcomes

	..
	34

	8.2
	8.2
	Impacts
	Impacts

	...
	35

	8.3
	8.3
	FutureWork
	FutureWork

	...
	35

	Bibliography
	Bibliography
	Bibliography

	...
	37

	List of Figures
	1.1
	1.1
	The fow of data into and out of an autonomous control program is shown here. The
	The fow of data into and out of an autonomous control program is shown here. The
	control stack is independent of whether the setup is virtual or physical, so sensing and
	dynamic response can be simulated to understand autonomous behavior in highly confgurable
	environments(adaptedfrom
	Girardin[1]).

	2

	2.1
	2.1
	The connection between Chrono physics and Chrono::Sensor is tightly coupled, but is run
	The connection between Chrono physics and Chrono::Sensor is tightly coupled, but is run
	at di.erent time steps due to the small time step requirement of dynamics and the slow
	update frequencies of most sensors. Virtual world state information is sent from Chrono to
	Chrono::Sensor with data returned to the user at specifc, and user-defned frequencies and
	delays.

	..
	4

	2.2
	2.2
	A general and typical example of flters that generate, augment, and return sensor data
	A general and typical example of flters that generate, augment, and return sensor data

	. . .
	5

	2.3
	2.3
	A concrete example of a possible setup for a camera sensor that generates an image using
	A concrete example of a possible setup for a camera sensor that generates an image using
	ray tracing, anti aliases the image before resizing, applies multiple augmentation flters for
	noiseanddistortion,andreturnsdatatothe user.

	6

	2.4
	2.4
	An advanced example that shows how Chrono::Sensor allows the use of a deep neural network
	An advanced example that shows how Chrono::Sensor allows the use of a deep neural network
	asasensor dataaugmentationflter.

	7

	2.5
	2.5
	An example command process in Chrono/Chrono::Sensor shows the overlap of computation
	An example command process in Chrono/Chrono::Sensor shows the overlap of computation
	made possible by eÿcient use of memory transactions and slower update rates in Chrono::sensor.

	7

	2.6
	2.6
	The use of multiple GPUs can allow Chrono::Sensor to simulate many sensors in the same
	The use of multiple GPUs can allow Chrono::Sensor to simulate many sensors in the same
	environment by distributing sensors among di.erent GPUs. Currently, the framework attempts
	to place sensors on GPUs by update frequency to lower the frequency of scene updates, which
	are the bottleneckofthe sensor framework.

	8

	3.1
	3.1
	Image pipeline that shows data acquisition from scene through to image output for perception.
	Image pipeline that shows data acquisition from scene through to image output for perception.

	9

	3.2
	3.2
	Noisemodelbased onEMVAstandard.
	Noisemodelbased onEMVAstandard.

	12

	3.3
	3.3
	3.3
	A comparison of undistorted and distorted images using pinhole and FOV models. The

	distortion seeks to replicate an ELP 2MP camera with a 2.1 mm lens and ˘80° FOV.
	distortion seeks to replicate an ELP 2MP camera with a 2.1 mm lens and ˘80° FOV.
	distortion seeks to replicate an ELP 2MP camera with a 2.1 mm lens and ˘80° FOV.

	...
	14

	3.4
	3.4
	Correlation between variance and color intensity in linear images from SIDD
	Correlation between variance and color intensity in linear images from SIDD

	15

	3.5
	3.5
	Comparisonoffull-resolutionnoisyimages.
	Comparisonoffull-resolutionnoisyimages.

	15

	3.6
	3.6
	Comparison of a small section of noisy images illustrating di.erences in model assumption
	Comparison of a small section of noisy images illustrating di.erences in model assumption

	. .
	16

	3.7
	3.7
	Scaling of a single camera with and without noise shows little impact of noise augmentation
	Scaling of a single camera with and without noise shows little impact of noise augmentation
	on simulation performance. Confguration: 16x9 camera aspect ratio, 30 Hz update frequency,
	10 seconds of simulation time, color calibration object scene, RTX 2080ti GPU

	17

	3.8
	3.8
	Scaling of a single camera shows the performance impact of increasing image size. Confgu
	Scaling of a single camera shows the performance impact of increasing image size. Confgu
	-

	ration: 16x9 camera aspect ratio, 30 Hz update frequency, 10 seconds of simulation time,
	173ktriangle scene, RTX2080tiGPU.

	17

	3.9
	3.9
	3.9
	Scaling of per-pixel samples for a single camera shows impact of super-sampling on simulation

	performance.
	performance.
	Confguration: 640x360 resolution, 30 Hz update frequency, 10 seconds of
	Confguration: 640x360 resolution, 30 Hz update frequency, 10 seconds of
	simulationtime,173ktrianglescene,RTX2080tiGPU.

	18

	3.10
	3.10
	3.10
	Scaling of cameras in a single scene shows the capability and performance impact of many

	cameras.
	cameras.
	Confguration: 1280x720 resolution, 30 Hz update frequency, 10 seconds of
	Confguration: 1280x720 resolution, 30 Hz update frequency, 10 seconds of
	simulationtime,173ktrianglescene,RTX2080tiGPU.

	18

	4.1
	4.1
	Multiple or partial return phenomena utilized by lidar to detect multiple objects per beam. In
	Multiple or partial return phenomena utilized by lidar to detect multiple objects per beam. In
	this example, the strongest return will also be the frst return. Modifed from velodynelidar.com
	[2]

	...
	19

	4.2
	4.2
	Multiple or partial return phenomena utilized by lidar to detect multiple objects per beam. In
	Multiple or partial return phenomena utilized by lidar to detect multiple objects per beam. In
	this example, the strongest return will also be the last return. Modifed from velodynelidar.com
	[2]

	...
	20

	4.3
	4.3
	Sampling pattern for discrete lidar beam simulation. The discretization is parameterized by
	Sampling pattern for discrete lidar beam simulation. The discretization is parameterized by
	the beam divergence angle and the width in samples of the beam

	21

	4.4
	4.4
	Setup for beam divergence and sampling discretization test
	Setup for beam divergence and sampling discretization test

	22

	4.5
	4.5
	Comparison of sampling in the beam divergence model and its impact on returned range and
	Comparison of sampling in the beam divergence model and its impact on returned range and
	intensity for a single beam with two o.set walls at 50 and 60 m. Both walls are assumed to
	have perfect refectance, and power dissipation is neglected

	23

	4.6
	4.6
	Scaling of rays for a single lidar showing the potential for increasing the resolution of a
	Scaling of rays for a single lidar showing the potential for increasing the resolution of a
	multi-sampled beams or many-beam lidars. Confguration: 5Hz update frequency, 10 seconds
	ofsimulationtime,173ktrianglescene,RTX2080tiGPU

	24

	4.7
	4.7
	Scaling of lidar in a single scene shows the capability and performance impact of simulating
	Scaling of lidar in a single scene shows the capability and performance impact of simulating
	many lidars. Confguration: resolution: 3800x48, 5Hz update frequency, 10 seconds of
	simulationtime,173ktrianglescene,RTX2080tiGPU.

	25

	5.1
	5.1
	Illustrationoftwo-dimensionalGPStrilateration
	Illustrationoftwo-dimensionalGPStrilateration

	.
	26

	6.1
	6.1
	Demonstration and qualitative comparison of accelerometer and gyroscope noise between
	Demonstration and qualitative comparison of accelerometer and gyroscope noise between
	simulationandrealIMU.

	30

	7.1
	7.1
	Simulated images from a demonstration of a scaled autonomous vehicle navigating a closed
	Simulated images from a demonstration of a scaled autonomous vehicle navigating a closed
	trackusinglidar todetecttrackboundaries.

	31

	7.2
	7.2
	Simulated point clouds from a demonstration of a scaled autonomous vehicle navigating a
	Simulated point clouds from a demonstration of a scaled autonomous vehicle navigating a
	closed track using lidar to detect track boundaries. Point cloud color encodes height of the
	pointfor easeofperception.

	32

	7.3
	7.3
	Simulated camera output for a sedan navigating a virtual replica of Park Street in Madison,
	Simulated camera output for a sedan navigating a virtual replica of Park Street in Madison,
	WI.Third-person viewonlyfor context.

	32

	7.4
	7.4
	Simulated lidar data for a sedan navigating a virtual replica of Park Street in Madison, WI.
	Simulated lidar data for a sedan navigating a virtual replica of Park Street in Madison, WI.
	Point cloud color encodes intensity and height for visual perception only

	33

	Abstract
	Abstract
	This document contains the fnal project report for the SAFER-SIM project titled “Physics-Based Sensor Models for Virtual Simulation of Connected and Autonomous Vehicles.” The report includes discussion of sensors models for simulation autonomous vehicles, and overviews the simulation framework developed in accordance with the project. The framework, called Chrono::Sensor is developed as a module alongside Project Chrono to augment the open-source multi-physics engine with the capability to simulation sensor
	1. Introduction
	1. Introduction
	Simulation promises to provide a safe and cost-e.ective means to train and evaluate perception and navigation algorithms for operating connected autonomous vehicles. In order for these simulation platforms to provide a comprehensive platform to conduct meaningful scenarios, the simulation tool must be capable of providing realistic vehicle dynamics, providing vehicle-to-vehicle and vehicle-to-everything communication, allowing for multiple interacting agents (vehicle, pedestrians, etc.), and providing reali
	In order to comprehensively test the e .ectiveness and safety of perception and navigation algorithms, it is important to provide, from within the virtual environment, synthetic data that is equivalent to data that would be produced by a real sensor. The research conducted under this project sought to further these e.orts by implementing a simulation framework that builds upon a high-fdelity multi-physics of real sensors along with distortion and noise models that can augment ground truth data in an e.ort t
	simulation tool [3,
	4,
	5], implementing simulation methods that closely mimic the data acquisition process

	The importance of sensor simulation in the software-in-the-loop testing of a vehicle control stack is world, known by the autonomous vehicle, is given by sensors.
	illustrated in Figure 1.1 where the information of the

	To contextualize the type and number of sensors used on a selection of autonomous vehicles as of 2018. While additional sensors are part of continued work, the focus of this project and report was on two interoceptive sensors (GPS and IMU) and two exteroceptive sensors (camera and lidar). Interoceptive sensors give internal state information about the vehicle such as position, velocity, acceleration, angular velocity, etc. Exteroceptive sensors provide information about a vehicle’s surroundings and are heav
	sensors, Table 1.1 lists the

	Figure
	Figure 1.1: The fow of data into and out of an autonomous control program is shown here. The control stack is independent of whether the setup is virtual or physical, so sensing and dynamic response can be simulated to understand autonomous behavior in highly confgurable environments (adapted from
	Figure 1.1: The fow of data into and out of an autonomous control program is shown here. The control stack is independent of whether the setup is virtual or physical, so sensing and dynamic response can be simulated to understand autonomous behavior in highly confgurable environments (adapted from
	Girardin [1]).

	Table 1.1: Sensor confguration from a select set of AV companies shows the reliance on vision-based sensing for autonomous behavior. Long-range (LR), medium-range (MR), and short-range (SR) lidar along with cameras and radars are used heavily for
	object detection (adapted from Girardin [1]).

	Company
	Company
	Company
	Lidars
	Radars
	Cameras
	IMUs

	Waymo
	Waymo
	1-LR, 1-MR, 4-SR
	4
	8
	1

	Uber
	Uber
	1-LR
	4
	7
	1

	Toyota
	Toyota
	4-MR, 4-SR
	4
	9
	1

	GM Cruise
	GM Cruise
	5-SR
	8
	16
	1

	Renault-Nissan
	Renault-Nissan
	4
	5
	8
	1

	Baidu
	Baidu
	1-LR, 3-SR
	4
	2
	1

	Navya
	Navya
	3-LR, 7-SR
	4
	6
	1

	2. Chrono::Sensor
	2. Chrono::Sensor
	For autonomous vehicle simulation, sensor models must generate data that corresponds to the vehicle dynamics and scene in which that vehicle is being simulated. To this end, Chrono::Sensor was developed as a framework for implementing physics-based sensor models alongside simulation of vehicle dynamics and dynamic scene evolution. Through a tight coupling, Chrono::Sensor can leverage the internal dynamic state of an object from Chrono and use that, in part, to generate interoceptive data for GPS and IMU. Fo
	The tight integration between Chrono and Chrono::Sensor Here, the virtual world from Chrono initializes the information for Chrono::Sensor. That data serves as ground truth information and is augmented to incorporate e.ects from lag, fnite data collection time, noise, distortion, and other sensor characteristics.
	is illustrated in Figure 2.1.

	For sensors that rely solely on internal state information (IMU and reduced GPS model), Chrono::Sensor stays in lock-step with the Chrono simulation. Since interoceptive sensors rely on data from many or most time steps but have little data augmentation overhead, this lock-step simulation prevents unnecessary overhead. For exteroceptive sensors such as camera and lidar, this is not the case. Since these sensors perceive the virtual scene, a di.erent approach is implemented.
	Excluding implementation details, two main factors impact the sensor models themselves. First, the sensors need highly detailed information about the scene, which aligns with the type of visual assets used in computer graphics. Second, a process that mimics the data acquisition of camera and lidar can improve the model accuracy and simplicity. For these two reasons, a ray-tracing approach is used for simulating camera and lidar. However, rather than implement a computer graphics pipeline based on ray-tracin
	For ray-tracing capabilities, Chrono::Sensor leverages hardware accelerated or required visualization. This improves the scalability and model development. Additionally, since rendering is computationally time consuming and since
	For ray-tracing capabilities, Chrono::Sensor leverages hardware accelerated or required visualization. This improves the scalability and model development. Additionally, since rendering is computationally time consuming and since
	the OptiX framework [6] which allows
	ray tracing [7] without interaction

	these sensors operate at lower frequency than the dynamic simulation (5-60 Hz vs 300-1000 Hz), the rendering is done in parallel and synchronized when data should be returned to the user or when new data generation starts. This still follows
	the illustration in Figure 2.1 but is not performed in lockstep.

	Figure
	Figure 2.1: The connection between Chrono physics and Chrono::Sensor is tightly coupled, but is run at di.erent time steps due to the small time step requirement of dynamics and the slow update frequencies of most sensors. Virtual world state information is sent from Chrono to Chrono::Sensor with data returned to the user at specifc, and user-defned frequencies and delays.
	Figure 2.1: The connection between Chrono physics and Chrono::Sensor is tightly coupled, but is run at di.erent time steps due to the small time step requirement of dynamics and the slow update frequencies of most sensors. Virtual world state information is sent from Chrono to Chrono::Sensor with data returned to the user at specifc, and user-defned frequencies and delays.

	The framework for simulating camera and lidar is implemented in a generic manner to allow for extension and customization. Generically, these sensors are implemented using a flter graph with a
	The framework for simulating camera and lidar is implemented in a generic manner to allow for extension and customization. Generically, these sensors are implemented using a flter graph with a
	general sensor model shown an operation on the data. In a generic sense, the flter graph includes data generation using any ray-tracing or physics-based model given. That generated data is subsequently processed by additional augmentation flters (i.e., noise addition), and fnally a flter is applied to return the data to the user with a specifed amount of lag.
	in Figure 2.2. Each flter represents

	Figure
	Figure 2.2: A general and typical example of flters that generate, augment, and return sensor data.
	Figure 2.2: A general and typical example of flters that generate, augment, and return sensor data.

	A a flter fowchart for a camera is illustrated. For this example model, data is generated in OptiX using ray tracing. That data is then processed to antialias the image, resize the image, add noise per pixel, apply gamma correction, introduce JPEG artifacts, and return the image to the user with lag. The flter-graph process mimics sensing pipelines as detailed later in the camera model discussion.
	concrete example is given in Figure 2.3, where

	As an alternative approach, a deep neural network can be applied as one of the flters if the network has been trained to introduce realistic artifacts. The flter fowchart representing this approach is shown use of deep neural networks is a subject of further research into hybrid physics-based and machine learning approaches for simulating sensors. This fell outside the scope of this project.
	in Figure 2.4. The training and

	In addition to model accuracy, solution eÿciency is an important aspect when simulating autonomous vehicles. This is considered through the implementation of a separate render thread and library use. The camera and lidar models implemented in this framework can make eÿcient use of hardware resources by avoiding unnecessary bottlenecks. A typical camera or lidar flter implementation is processed entirely on the graphics processing unit (GPU) with synchronization only occurring when virtual world state or
	In addition to model accuracy, solution eÿciency is an important aspect when simulating autonomous vehicles. This is considered through the implementation of a separate render thread and library use. The camera and lidar models implemented in this framework can make eÿcient use of hardware resources by avoiding unnecessary bottlenecks. A typical camera or lidar flter implementation is processed entirely on the graphics processing unit (GPU) with synchronization only occurring when virtual world state or
	synthetic sensor data needs to be each flter, including data generation, is performed and limited to the GPU.
	communicated. An example of this is illustrated in Figure 2.5 where

	Figure
	Figure 2.3: A concrete example of a possible setup for a camera sensor that generates an image using ray tracing, anti aliases the image before resizing, applies multiple augmentation flters for noise and distortion, and returns data to the user.
	Figure 2.3: A concrete example of a possible setup for a camera sensor that generates an image using ray tracing, anti aliases the image before resizing, applies multiple augmentation flters for noise and distortion, and returns data to the user.

	Since autonomous vehicles often incorporates tens of sensors and simulations can involve multiple vehicles, the total number of sensors in a simulation can quickly balloon. In these cases, Chrono::Sensor can make use of additional hardware resources such as multiple GPUs when running on a remote server. The framework distributes the sensors among the GPUs to make eÿcient use of the resources available. Sensors are divided between GPUs based on update frequency in order to reduce the number of total scene up
	in Figure 2.6.

	Chrono::Sensor currently supports camera, lidar, GPS, and IMU sensors with the ability to extend and implement custom sensors using the existing framework. In addition to sensor-specifc parameters,
	Chrono::Sensor currently supports camera, lidar, GPS, and IMU sensors with the ability to extend and implement custom sensors using the existing framework. In addition to sensor-specifc parameters,
	each sensor can be parameterized by update frequency, lag, and data collection time. The sensors can then be attached to a body within the Chrono simulation for generating data. The sensor parameters along with the collection of flter graphs represent a model of a specifc sensor.

	Figure
	Figure 2.4: An advanced example that shows how Chrono::Sensor allows the use of a deep neural network as a sensor data augmentation flter.
	Figure 2.4: An advanced example that shows how Chrono::Sensor allows the use of a deep neural network as a sensor data augmentation flter.

	Figure
	Figure 2.5: An example command process in Chrono/Chrono::Sensor shows the overlap of computation made possible by eÿcient use of memory transactions and slower update rates in Chrono::sensor.
	Figure 2.5: An example command process in Chrono/Chrono::Sensor shows the overlap of computation made possible by eÿcient use of memory transactions and slower update rates in Chrono::sensor.

	Figure
	Figure 2.6: The use of multiple GPUs can allow Chrono::Sensor to simulate many sensors in the same environment by distributing sensors among di.erent GPUs. Currently, the framework attempts to place sensors on GPUs by update frequency to lower the frequency of scene updates, which are the bottleneck of the sensor framework.
	Figure 2.6: The use of multiple GPUs can allow Chrono::Sensor to simulate many sensors in the same environment by distributing sensors among di.erent GPUs. Currently, the framework attempts to place sensors on GPUs by update frequency to lower the frequency of scene updates, which are the bottleneck of the sensor framework.

	3. Camera Modeling and Simulation
	3. Camera Modeling and Simulation
	3.1 Camera Model Background
	3.1 Camera Model Background
	In order to model a camera to produce realistic synthetic image streams from a virtual environment that are equivalent to real data produced by sensors on an autonomous agent, we must frst understand the process by which physical camera sensors produce data. A diagram representing the steps is shown in
	Figure 3.1 and described in the literature [8, 9].

	Figure 3.1: Image pipeline that shows data acquisition from scene through to image output for perception.
	For a physical sensor, the scene is independent of the camera but can have signifcant impact on image processing due to varying atmospheric conditions and lighting. The light from the scene passes through the optical system to focus larger quantities of photons on the image sensor. Because of this focusing, light can be obtained from wider angles causing lens distortion, and imperfect material refections can cause ghost artifacts called lens fare.
	The image sensor, which measures photon intensity levels via an array of sensor pixels, incurs what amounts to measurement error. With the measured values per pixel, the raw image is passed through an image signal processor (ISP), which is on-device and can include operations such as demosaicking, color balancing, and auto exposure, among others. The data is then compressed in image format, or more commonly in autonomous applications, is encoded as video for streaming to a primary computational resource for
	further described in the literature [8, 9].

	Within the light acquisition process, lens systems, which are used to accumulate additional light, often introduce distortion that can result in measured data that signifcantly di.ers from the ground
	Within the light acquisition process, lens systems, which are used to accumulate additional light, often introduce distortion that can result in measured data that signifcantly di.ers from the ground
	truth environment. These distortions include radial and tangential distortion, chromatic aberration, vignetting, depth of feld, and lens fare. Radial and tangential distortion are non-uniform changes in the direction of light paths commonly seen in wide-angle or fsh-eye lenses. With calibration and estimation, these are often reduced in computer vision applications. Chromatic aberration is an e.ect caused by wavelength-dependent refraction that creates a positional o.set of light and pixel colors. Vignettin

	3.2 Camera Model Implementation
	3.2 Camera Model Implementation
	Generation of rendered data from OptiX is performed through custom ray-tracing kernels that implement physically based materials. The custom implementation allows for balancing accuracy and performance for the given application. Additionally, custom ray-tracing kernels also mean custom ray launch kernels, allowing custom lens models to be implemented directly in the data generation step without needing to introduce additional pre-or post-processing steps. The rendering step for the camera sensor is paramete
	On the modeling of radial and tangential lens distortion, signifcant work found in literature has been done both to recreate distortions as well as remove distortions from existing images. A summary of classical models is given by Sturm et al. as pinhole, fsh-eye, and polynomial models. More recent models and techniques for improving distortion modeling are reviewed by Tang research, a wide-angle-lens model was implemented based on geometric considerations of a single spherical lens. The model, known as the
	[10], overviewing approaches such
	et al. [11]. As part of this

	tan(rtan(!))
	1

	r= , (3.1)
	2

	tan !
	where ! is the FOV, ris the undistorted radius, and ris the distorted radius. This model is based purely on geometric considerations of a single spherical lens. While an estimate of the physical parameter may suÿce, further calibration is often necessary.
	1
	2

	In order to allow the model to be based on the camera’s horizontal FOV, and to enforce that the resulting simulated FOV reproduces, exactly, the specifed feld of view, the implementation is modifed to scale the distortion for consistency. Additionally, the distortion is used to modify ray directions rather than modify pixel locations. The resulting model follows
	r= (x+ y) tan(rtan(!))
	1
	q
	1
	2
	1
	2
	1

	r=
	2

	tan ! tan(tan(!))
	s = (3.2)
	tan !
	x
	1
	r
	2

	x=
	2

	rs
	1
	y
	1
	r
	2

	y= ,
	2

	rs
	1

	where x,yis the undistorted ray direction, x,yis the distorted ray direction, ! is half the FOV, and r,rare intermediate calculations and correspond to the radius of distorted and undistorted directions.
	1
	1
	2
	2
	1
	2

	The basic noise model that still represents true noise seen on image sensors comes from the EMVA model, which specifes that pixel noise can be estimated and modeled as a pixel-dependent Gaussian distribution expressed as
	Standard [12]

	In(p)= I(p)+ ., . ˘N (0,˙)
	p
	2

	(3.3)
	˙
	˙
	2
	= K
	2
	˙
	2
	+ ˙
	2
	+ K(µ
	p

	p dq − µp,dark) ,
	where In(p) is the intensity of the noisy pixel p; I(p) is the intensity of the ground truth; . is the noise sampled from a normal distribution parameterized by ˙p which is a function of the sensor gain K, the sensor readout noise ˙d, and the dark noise and shot noise which come from Poisson distributions parameterized by µp,dark and µp respectively. This statistical model represents data collection illustrated
	in Figure 3.2.

	Figure
	Figure 3.2: Noise model based on EMVA standard.
	Figure 3.2: Noise model based on EMVA standard.

	The original pixel-dependent model was a plausible local spatial and chromatic correlation by approximating the e.ect of demosaicking. The resulting model follows:
	modifed by Liu et al. [13] to account for

	I = f(L + .s + .c)+ .q
	.s ˘N (0, L˙) (3.4)
	s
	2

	.c ˘N (0,˙) ,
	2

	c
	where I is the noisy image, f is the camera response function (CRF), L is the photon intensity, and ˙c and ˙s are tunable parameters. In order to convert the clean image to photon intensity, the inverse camera response function is applied.
	Chrono::Sensor provides several implementations of image noise proposed in the literature. As many of the higher-fdelity image-denoising methods are computationally expensive or require diÿcult-to-estimate parameters, two basic solutions are provided as initial models for the camera sensor. The frst, which is often insuÿcient in image denoising but may be useful in some perception applications when training for robustness, is additive white Gaussian noise. This noise is sampled independently from a Gaussian
	Chrono::Sensor provides several implementations of image noise proposed in the literature. As many of the higher-fdelity image-denoising methods are computationally expensive or require diÿcult-to-estimate parameters, two basic solutions are provided as initial models for the camera sensor. The frst, which is often insuÿcient in image denoising but may be useful in some perception applications when training for robustness, is additive white Gaussian noise. This noise is sampled independently from a Gaussian
	distribution whose parameters are constant across all pixels. The second model, which is based on the standard model and subsequent augmentations as
	found in the literature [12,
	13,
	14,
	15,
	16], is written

	I = L + .
	(3.5)
	. ˘N (0, L˙+ ˙) ,
	1
	2
	2
	2

	where I is the noisy pixel, L is the ground truth pixel value, and ˙and ˙parameterize the distribution dependent on the pixel intensity L. The parameters ˙and ˙can be estimated for a given camera by using mean removal of noise and estimating noise magnitude based on correlation with intensity. Further model enhancements are in development, including additional ISP modules such as gamma correction and compression artifacts.
	1
	2
	1
	2

	3.3 Camera Simulation Results
	3.3 Camera Simulation Results
	To demonstrate lens distortion, which can have a signifcant impact on the information perceived through a camera sensor, particularly for wide angle lenses, the FOV was used. The target camera is an ELP 2 megapixel camera with a 2.1 mm lens. The lens has an FOV of 1.408 radians (80.7°). The FOV model, which is derived from geometric considerations, uses ! =1.408/2=0.704.
	model defned in Eq. 3.1

	The results from Chrono::Sensor are shown an undistorted version on the left, and a distorted version on the right. Further work stemming from this research will look into validating this model and understanding the errors and their impact on realism.
	in Figure 3.3 with

	In addition to demonstrated distortion, a qualitative comparison of the camera noise models is made based on clean image pairs can be used to estimate noise distributions. While often used for training denoising algorithms, these pairs are used in this demonstration to estimate noise levels and introduce artifcial noise to synthetic images.
	empirical image noise. Using the Smartphone Image Denoising Dataset (SIDD) [17], noisy and

	For the additive white Gaussian noise (AWGN) model, the standard deviation, assuming identically distributed Gaussian noise, can be estimated by subtracting the clean image from the noisy image and
	Figure
	Figure 3.3: A comparison of undistorted and distorted images using pinhole and FOV models. The distortion seeks to replicate an ELP 2MP camera with a 2.1 mm lens and ˘80° FOV.
	Figure 3.3: A comparison of undistorted and distorted images using pinhole and FOV models. The distortion seeks to replicate an ELP 2MP camera with a 2.1 mm lens and ˘80° FOV.

	(a) Undistorted image using a pin-hole camera model. (b) Distorted image using a modifed feld of view model with single physics-based input parameter.
	calculating the standard deviation. The AWGN that best approximated the empirical noise had a standard deviation of 0.0093 for images in the range of 0 to 1.
	For the intensity-dependent model, the parameters are obtained by binning the pixels based on intensity. The standard deviation for each intensity can then be estimated, and a regression will yield a linear relationship between variance and intensity. For the sample images, the linear regression yielded a relationship of ˙=0.0325I +0.00627. The correlation is shown in Figure The standard deviations were calculated using 143.8 million noisy pixel values in the linear RGB space as true image noise is measured
	2
	2
	2
	3.4.

	Sample noisy images based on the estimated parameters are shown The simulated images are generated at the same resolution as the real data for ease of comparison. Since the images are obtained at high resolution and down-scaling distorts noise, a zoomed comparison is given in Figure are visible. While the standard model cannot account for spatial, chromatic, and temporal correlation, the dataset used has little compression or post-processing, resulting in a more representative domain for the standard model.
	Sample noisy images based on the estimated parameters are shown The simulated images are generated at the same resolution as the real data for ease of comparison. Since the images are obtained at high resolution and down-scaling distorts noise, a zoomed comparison is given in Figure are visible. While the standard model cannot account for spatial, chromatic, and temporal correlation, the dataset used has little compression or post-processing, resulting in a more representative domain for the standard model.
	in Figure 3.5.
	3.6, where individual pixels

	between the noise models are needed, and validation will require implementation of additional ISP modules and improvement of the scene similarity to remove compounding e.ects.

	Figure
	Figure 3.4: Correlation between variance and color intensity in linear images from SIDD.
	Figure 3.4: Correlation between variance and color intensity in linear images from SIDD.

	Figure
	(a) Additive white Gaussian noise, ˙ =0.0093.
	(a) Additive white Gaussian noise, ˙ =0.0093.

	Figure
	(b) Intensity-dependent Gaussian noise, ˙=0.0325I +0.00627.
	(b) Intensity-dependent Gaussian noise, ˙=0.0325I +0.00627.
	2
	2

	2
	2

	2
	2

	Figure
	(c) Real image noise example from SIDD.
	(c) Real image noise example from SIDD.

	Figure 3.5: Comparison of full-resolution noisy images.
	The underestimation of noise due to assuming AWGN is explained by the majority of pixels having low intensity. This means that since there is a correlation, the AWGN assumption was a low estimate and exposed the weaknesses in the identical distribution assumption. Only visual comparison can be made at this time, with the standard model appearing to be closer to reality. While correlation components
	The underestimation of noise due to assuming AWGN is explained by the majority of pixels having low intensity. This means that since there is a correlation, the AWGN assumption was a low estimate and exposed the weaknesses in the identical distribution assumption. Only visual comparison can be made at this time, with the standard model appearing to be closer to reality. While correlation components
	are known to be missing, realism benchmarks are needed to understand the usefulness of each of these models in simulations for evaluating autonomous navigation and perception.

	Figure
	(a) Additive white Gaussian noise, ˙ =0.0093.
	(a) Additive white Gaussian noise, ˙ =0.0093.

	Figure
	(b) Intensity-dependent Gaussian noise, ˙ =0.0499I +0.00666.
	(b) Intensity-dependent Gaussian noise, ˙ =0.0499I +0.00666.

	Figure
	(c) Real image noise example from SIDD.
	(c) Real image noise example from SIDD.

	Figure 3.6: Comparison of a small section of noisy images illustrating di.erences in model assumption.
	In addition to model accuracy, performance and scaling results are important to understand the support for simulating many vehicles and sensors.
	As the addition of image noise requires random sampling from unique distributions, it is important to understand the performance impact of the noise model. A scaling analysis was conducted to compare the generation of noised and un-noised images. The analysis was performed on an Nvidia RTX 2080ti GPU for a camera operating at 30 Hz within a simulated scene that included the ColorChecker the increase in wall time needed to perform 10 seconds of simulation with increasing image size. While the noisy images of
	[18]
	pattern. Figure 3.7 shows

	Since the ray-tracing algorithm is computationally complex, it is also important to contextualize the performance of the simulation when the camera takes higher resolution or, analogously, multiple samples are used per image pixel for super-sampling. Since the implemented super-sampling algorithm requires an image-reduction step, both scaling studies are provided and can be seen in Figures simulations were run for 10 simulation seconds with the wall time required to complete the simulation recorded. Each si
	3.8 and 3.9. All

	Figure
	Figure 3.7: Scaling of a single camera with and without noise shows little impact of noise augmentation on simulation performance. Confguration: 16x9 camera aspect ratio, 30 Hz update frequency, 10 seconds of simulation time, color calibration object scene, RTX 2080ti GPU.
	Figure 3.7: Scaling of a single camera with and without noise shows little impact of noise augmentation on simulation performance. Confguration: 16x9 camera aspect ratio, 30 Hz update frequency, 10 seconds of simulation time, color calibration object scene, RTX 2080ti GPU.

	Figure
	Figure 3.8: Scaling of a single camera shows the performance impact of increasing image size. Confguration: 16x9 camera aspect ratio, 30 Hz update frequency, 10 seconds of simulation time, 173k triangle scene, RTX 2080ti GPU.
	Figure 3.8: Scaling of a single camera shows the performance impact of increasing image size. Confguration: 16x9 camera aspect ratio, 30 Hz update frequency, 10 seconds of simulation time, 173k triangle scene, RTX 2080ti GPU.
	-

	The fnal performance results for camera simulation shown here are for inclusion of multiple cameras
	in the simulation. Each camera had a resolution of 1280x720 with a 30 Hz update rate. The scene was
	in the simulation. Each camera had a resolution of 1280x720 with a 30 Hz update rate. The scene was
	a single high-resolution mesh with a the computation time required for including additional cameras. The scaling included up to 256 cameras on an RTX 2080ti.
	duration of 10 simulation seconds. The results in Figure 3.10 show

	Figure
	Figure 3.9: Scaling of per-pixel samples for a single camera shows impact of super-sampling on simulation performance. Confguration: 640x360 resolution, 30 Hz update frequency, 10 seconds of simulation time, 173k triangle scene, RTX 2080ti GPU.
	Figure 3.9: Scaling of per-pixel samples for a single camera shows impact of super-sampling on simulation performance. Confguration: 640x360 resolution, 30 Hz update frequency, 10 seconds of simulation time, 173k triangle scene, RTX 2080ti GPU.

	Figure
	Figure 3.10: Scaling of cameras in a single scene shows the capability and performance impact of many cameras. Confguration: 1280x720 resolution, 30 Hz update frequency, 10 seconds of simulation time, 173k triangle scene, RTX 2080ti GPU.
	Figure 3.10: Scaling of cameras in a single scene shows the capability and performance impact of many cameras. Confguration: 1280x720 resolution, 30 Hz update frequency, 10 seconds of simulation time, 173k triangle scene, RTX 2080ti GPU.

	4. Lidar Modeling and Simulation
	4. Lidar Modeling and Simulation
	4.1 Lidar Model Background
	4.1 Lidar Model Background
	Since lidar plays a key role in perception and planning algorithms, the lidar must model accurate beam returns in the highly complex virtual environments used for testing and training autonomous navigation. As automotive and robotic applications often rely on long-range and relatively low-cost lidar, beam divergence plays a signifcant role in the collected data. Tightly coupled with beam divergence, the power distribution across the beam spot is often modeled using a complexity to a simulated sensor. In add
	Gaussian distribution [19], adding
	strongest return, frst and strongest, etc.) [2]. The interplay between
	is illustrated in Figures 4.1 and 4.2, where return type

	Figure
	Figure 4.1: Multiple or partial return phenomena utilized by lidar to detect multiple objects per beam. In this example, the strongest return will also be the frst return.
	Figure 4.1: Multiple or partial return phenomena utilized by lidar to detect multiple objects per beam. In this example, the strongest return will also be the frst return.
	Modifed from velodynelidar.com
	[2].

	Figure
	Figure 4.2: Multiple or partial return phenomena utilized by lidar to detect multiple objects per beam. In this example, the strongest return will also be the last return.
	Figure 4.2: Multiple or partial return phenomena utilized by lidar to detect multiple objects per beam. In this example, the strongest return will also be the last return.
	Modifed from velodynelidar.com
	[2].

	4.2 Lidar Model Implementation
	4.2 Lidar Model Implementation
	For generating lidar data, the same ray-tracing methodology used in the camera sensor is applied, but because complete control is allowed over the material and the ray launch algorithm, the lidar implements its own rendering options. For materials, the encoded value is defned to be the intensity of the return from the direction of the ray. For ray launch, a vertical and horizontal angle is measured, alleviating all FOV issues associated with a traditional rendering plane. The lidar rays are then traced in t
	The Chrono::Sensor lidar is parameterized by update rate, width and height of the samples in a frame, horizontal and vertical FOV, sensor lag, data collection time, number of samples to use per beam, the beam divergence angle that is used for multiple returns, the return mode when multiple objects are seen, and the method for generation, which defaults to ray cast with potential for expansion to additional path-tracing models. The lidar can also be attached to an object in the Chrono simulation and can be m
	In accounting for multiple returns, extended in Chrono::Sensor. This leverages the ray-tracing algorithm to discretize the beam for each lidar ray. The beam discretization is parameterized based on the width of the beam, in number of samples, and the angle of divergence.
	a beam discretization model based on work by Goodin et al. [20] is

	The original model upon which this implementation was based was shown to produce plausible results a rectangular beam pattern. A pulses are simulated, with each return modeled as a Gaussian distribution with approximated mean and standard deviation based on the return distance and material back scattering.
	in complex grassy scenery [20
]. Figure 4.3 illustrates the sampling of

	similar, but computationally intensive, discretization is discussed by Yin et al. [21] where multiple laser

	Figure
	Figure 4.3: Sampling pattern for discrete lidar beam simulation. The discretization is parameterized by the beam divergence angle and the width in samples of the beam.
	Figure 4.3: Sampling pattern for discrete lidar beam simulation. The discretization is parameterized by the beam divergence angle and the width in samples of the beam.

	The current state of the art limits the sampling resolution to nine samples per beam to estimate a return pattern. As demonstrated here, nine samples provides a crude estimate of intensity for strongest return, but is a signifcant improvement from the single-ray beam approximation used in many gameengine-based simulators. That may in part help explain the apparently large realism gap with synthetic lidar data in combination with limited scene realism.
	-

	work found in literature, this implementation parameterizes the model by the sample radius such that the discretization can be increased as part of the model.
	The implemented model uses the rectangular beam approximation illustrated in Figure 4.3. Augmenting

	The lidar noise model is implemented as a Gaussian distribution with independently parameterized distributions applied to range, intensity, vertical angle, and horizontal angle. The noise is applied directly to the raw measurements (range and intensity) rather than being applied to the processed point cloud.
	This is critical since generation of a point cloud (x,y,z,intensity) is a post-processing step in lidar sensors. As noise from a real sensor is made at the time of measurement, the simulated lidar is implemented in the same order. The parameters for the distributions are user-defned and would need to be estimated from lidar data, or found in a data sheet.

	4.3 Lidar Simulation Results
	4.3 Lidar Simulation Results
	To demonstrate the lidar implementation, a comparison between beam discretization options is given below. Here, one, nine, and 81 samples are used to sample a single lidar beam. The one-sample case corresponds to most game-based simulation solutions; the nine-sample case corresponds to the state of the art found in the study the impact of multiple returns on a simulated point cloud, a single lidar beam is simulated, and a scenario is created that will force multiple returns. The scenario includes two walls
	work by Goodin et al. [20]. To
	with 3 mrad divergence [2] results in
	in Figure 4.4.

	Figure
	Figure 4.4: Setup for beam divergence and sampling discretization test.
	Figure 4.4: Setup for beam divergence and sampling discretization test.

	As the gap in the wall slides past the beam spot, the range based on strongest return (only return for single ray) and intensity are the same behavior for each method as expected since the range will shift at the same position relative to the wall. The intensity in signifcant di.erence due to the sampling size. The expected strongest return should result in a relative intensity of 0.5 (neglecting power loss over distance and assuming perfect refectance). The single ray will return full power since the wall
	plotted. The range in Figure 4.5a, shows
	Figure 4.5b shows

	Figure
	(a) Beam sampling shows no e.ect of wall-gap multi return scenario, but would have signifcant impact when simulating lidar in fne scene regions such as fences and vegetation.
	(a) Beam sampling shows no e.ect of wall-gap multi return scenario, but would have signifcant impact when simulating lidar in fne scene regions such as fences and vegetation.

	Figure
	(b) Even for the simple comparison of an o.set wall, beam intensity is signifcantly impacted by beam sampling and divergence.
	(b) Even for the simple comparison of an o.set wall, beam intensity is signifcantly impacted by beam sampling and divergence.

	Figure 4.5: Comparison of sampling in the beam divergence model and its impact on returned range and intensity for a single beam with two o.set walls at 50 and 60 m. Both walls are assumed to have perfect refectance, and power dissipation is neglected.
	This work shows that there is signifcant room for improvement in the beam divergence model, particularly by harnessing recent hardware advances in ray tracing. Future work should focus on understanding the impact of beam divergence on data realism and introduce a model that provides a signifcant level of realism without an excessive level of computational burden. Along with beam
	This work shows that there is signifcant room for improvement in the beam divergence model, particularly by harnessing recent hardware advances in ray tracing. Future work should focus on understanding the impact of beam divergence on data realism and introduce a model that provides a signifcant level of realism without an excessive level of computational burden. Along with beam
	divergence, power dissipation and scattering will be included in such a model so that the relative intensity provides a close match to reality.

	Since higher accuracy can be obtained for the computation time for increasing the number of samples per lidar. Since the reduction time for samples per beam is low, the performance for samples per beam and beams per scan are nearly equivalent given the same total number of rays launched by the ray-tracing algorithm. The overall impression of increasing the ray count for a lidar in Chrono::Sensor.
	higher-sample lidars, the scaling in Figure 4.6 shows
	results in Figure 4.6 give the

	Figure
	Figure 4.6: Scaling of rays for a single lidar showing the potential for increasing the resolution of a multi-sampled beams or many-beam lidars. Confguration: 5Hz update frequency, 10 seconds of simulation time, 173k triangle scene, RTX 2080ti GPU.
	Figure 4.6: Scaling of rays for a single lidar showing the potential for increasing the resolution of a multi-sampled beams or many-beam lidars. Confguration: 5Hz update frequency, 10 seconds of simulation time, 173k triangle scene, RTX 2080ti GPU.

	To show the performance burden for increasing the number of lidars in a simulation, a scaling analysis is increased from 1 to 256 with the time required to perform 10 seconds of simulation shown for each confguration. The scene includes the high-resolution mesh described previously. The update frequency of the lidar is set to 5 Hz, which is within the operating range of a Velodyne HDL-32E.
	is shown in Figure 4.7. The number of lidars

	Figure
	Figure 4.7: Scaling of lidar in a single scene shows the capability and performance impact of simulating many lidars. Confguration: resolution: 3800x48, 5Hz update frequency, 10 seconds of simulation time, 173k triangle scene, RTX 2080ti GPU.
	Figure 4.7: Scaling of lidar in a single scene shows the capability and performance impact of simulating many lidars. Confguration: resolution: 3800x48, 5Hz update frequency, 10 seconds of simulation time, 173k triangle scene, RTX 2080ti GPU.

	5. GPS Modeling and Simulation
	5. GPS Modeling and Simulation
	The Global Positioning System (GPS) is a localization instrument that allows robots and autonomous vehicles to pinpoint their location. The receiver listens to signals broadcast from GPS satellites to compute its own location. The receiver uses orbital and time information from the satellite to compute a distance to the satellite and through trilateration can pinpoint its own coordinates in space. This process the two-dimensional case.
	is illustrated in Figure 5.1 for

	Figure
	Figure 5.1: Illustration of two-dimensional GPS trilateration.
	Figure 5.1: Illustration of two-dimensional GPS trilateration.

	In three dimensions, a distance to a single satellite places the receiver on the surface of a sphere with radius equal to this distance. With a second satellite, the location is restricted to a circle in space. With a third satellite, this is narrowed to two points in space. With an assumption of interior or exterior point, these three satellites can be enough to pinpoint a location, although four satellites is the minimum, with no assumptions, to guarantee a known location.
	The GPS model in Chrono::Sensor is parameterized based on the update rate, the sensor lag, the collection window, a reference GPS location for the origin of the simulation, and a desired noise model.
	The sensor is then attached to a Chrono body with a relative position and orientation. Since the receiver orientation is irrelevant, the orientation component of relative attachment is ignored.
	In Chrono::Sensor, GPS ground truth information is generated using a combination of the positional state of the object to which the sensor is attached, and the relative position of attachment. Because a GPS often has a low update rate and high lag, the positional data from the simulation is averaged over the specifed data collection window before introducing noise. Once noise is applied, the data is held and only provided to the user once the lag time has elapsed. This model of lag is applicable to all sens
	The current GPS noise model uses independent Gaussian distributions parameterized independently for latitude, longitude, and altitude. Although higher complexity models exist that account for GPS lock modern GPS combine information from an IMU, additional satellites, and complex fltering algorithms to considerably reduce noise. While noise still exists, it is often distorted beyond the modeling capability shown positions to calculate visibility is also shown to satellite are traced. Then, based on the dista
	and satellite visibility [22], many
	by Balaguer and Carpin [22]. The principle of tracking satellite
	by Durst and Goodin [23] where paths from the receiver
	model presented by Durst and Goodin [23] compared to the highly

	6. IMU Modeling and Simulation
	6. IMU Modeling and Simulation
	An Inertial Measurement Unit (IMU) is commonly included on autonomous vehicles to assist in pose estimation. These sensors most commonly include a gyroscope and accelerometer, but can also include magnetometer. Currently, the accelerometer and gyroscope are included in the IMU implementation, with further work being done to include a magnetometer with noise and drift. An accelerometer returns a local translational acceleration in three directions. The acceleration is relative to free-fall, meaning zero acce
	The implemented IMU is parameterized by the update rate, the sensor lag, a data collection window, and a noise model. The ground truth data is calculated using internal state information from the Chrono body to which the sensor is attached and the relative attachment position and orientation. The ground truth data from Chrono is averaged over the data collection window, augmented with noise, and provided to the user after a period of time defned by the sensor lag.
	The IMU noise model implemented in Chrono::Sensor is based on work by Shah showed promising results for recreating accelerometer and gyroscope noise using a Gaussian model with drifting parameters. The noise model for the gyroscope is given by,
	et al. [24] which

	!output = ! + .a + bt,.a ˘ N(0,ra)
	s
	(6.1)
	bt = bt−1 + .b,.b ˘ N(0,b) , ta
	0
	dt

	where !output is the gyroscope reading and ! is the ground truth angular velocity relative to the sensor. Noise variance ra, bias b, and time constant ta are user-defned parameters; .a and .b are random variables, sampled from a Gaussian distribution as parameterized above, accounting for variation in noise
	0
	and bias drift [24].

	Accelerometer noise follows a similar distribution, but the raw data calculation must account for gravity:
	aoutput =(a − g)+ .a + bt,.a ˘ N(0,ra)
	s
	(6.2)
	bt = bt−1 + .b,.b ˘ N(0,b) , ta
	0
	dt

	where aoutput is the accelerometer reading, a is the ground truth translational acceleration of the sensor, g is the gravitational acceleration, and dt is the update period. Noise variance ra, bias b, and time constant ta are user-defned parameters; .a and .b are random variables, sampled from a Gaussian distribution as parameterized above, accounting for current model could be expanded as approach that additionally incorporates the e.ect of temperature on the sensor noise. Chrono::Sensor allows for this ex
	0
	variation in noise and bias drift [24]. The
	shown by Durst and Goodin [23] to implement an

	Simulated IMU results are shown for a stationary sensor, equivalent to an IMU resting on a table. The virtual sensor noise is set with accelerometer parameters: ra =0.0075, b=0.001, and ta =0.1, and gyroscope parameters: ra =0.001, b=0.0, ta =0.0. The stationary results are compared to results from a stationary mobile phone accelerometer and gyroscope. This is not a validation study, and the mobile sensor deviates from automotive sensors due to calibration and lack of fltering, but shows example data genera
	0
	0
	The comparison in Figure 6.1 shows

	Figure
	Figure 6.1: Demonstration and qualitative comparison of accelerometer and gyroscope noise between simulation and real IMU.
	Figure 6.1: Demonstration and qualitative comparison of accelerometer and gyroscope noise between simulation and real IMU.

	7. Demonstration of Technology
	7. Demonstration of Technology
	Two examples are discussed next to demonstrate the Chrono::Sensor platform. The frst example shows a use for evaluating a navigation algorithm, and the second shows a demonstration of capability in a replica virtual environment.
	For demonstrating evaluation, a scaled autonomous vehicle was placed in a closed track to evaluate the e.ectiveness of a lidar-only navigation strategy. The strategy used the simulated lidar in Chrono::Sensor to detect the track boundaries and generate a safe pathway between these clusters. The vehicle was able to safely navigate the previously unseen track. The camera output from the demonstration can be seen an RGB third-person view and a greyscale frst-person view from the front of the vehicle. The lidar
	in Figure 7.1 shows
	in Figure 7.2.

	Figure
	(a) Third-person view of scaled vehicle on closed track.
	(a) Third-person view of scaled vehicle on closed track.

	Figure
	(b) Grey-scale image from on-board camera mounted to the scaled autonomous vehicle.
	(b) Grey-scale image from on-board camera mounted to the scaled autonomous vehicle.

	Figure 7.1: Simulated images from a demonstration of a scaled autonomous vehicle navigating a closed track using lidar to detect track boundaries.
	As an on-road scenario example, we provide a second demonstration using a virtual reconstruction The demonstration shows the simulated camera
	of Park Street in Madison, WI, courtesy of Continental Mapping [25].
	output in Figure 7.3.

	Simulated lidar, based on a virtual roof-mounted lidar with parameters representative of widely used automotive lidar a three-dimensional rendering of the generated point cloud including details such as trees and buildings from the virtual environment. Figure a top-down view of the simulated point cloud illustrating the sensor’s inclusion of roadways and building outlines.
	[2], is shown
	in Figure 7.4.
	Figure 7.4a shows
	7.4b shows

	Figure
	Figure 7.2: Simulated point clouds from a demonstration of a scaled autonomous vehicle navigating a closed track using lidar to detect track boundaries. Point cloud color encodes height of the point for ease of perception.
	Figure 7.2: Simulated point clouds from a demonstration of a scaled autonomous vehicle navigating a closed track using lidar to detect track boundaries. Point cloud color encodes height of the point for ease of perception.

	(a) (b)
	Figure
	Figure 7.3: Simulated camera output for a sedan navigating a virtual replica of Park Street in Madison, WI. Third-person view only for context.
	Figure 7.3: Simulated camera output for a sedan navigating a virtual replica of Park Street in Madison, WI. Third-person view only for context.

	(a) Hood-mounted camera (b) Third-person camera
	(a) Hood-mounted camera (b) Third-person camera
	(a) Three-dimensional view of rendered point cloud. (b) Birds-eye view of simulated point cloud.

	Figure
	Figure 7.4: Simulated lidar data for a sedan navigating a virtual replica of Park Street in Madison, WI. Point cloud color encodes intensity and height for visual perception only.
	Figure 7.4: Simulated lidar data for a sedan navigating a virtual replica of Park Street in Madison, WI. Point cloud color encodes intensity and height for visual perception only.

	8. Conclusions
	8. Conclusions
	As part of this SAFER-SIM project, we established a simulation framework for modeling and simulating sensors for training and evaluation of autonomous vehicles. The simulation framework leverages Chrono for generating ground truth dynamic data for interoceptive sensors. For exteroceptive sensors, the scene evolution is driven by the dynamics in Chrono and includes vehicle dynamics and contact. With Chrono::Sensor, users can add virtual sensors to existing simulations to train and evaluate algorithms for per
	Currently supported sensors include camera, lidar, GPS, and IMU with the capability for a user to extend and implement a custom sensor that can leverage all existing components of the framework. Each sensor includes parameters to defne the data collection and augmentation process. The camera and lidar sensors leverage hardware-accelerated ray tracing that allows for custom implementation of materials (for camera, lidar, or custom sensor), and eÿcient scaling and data augmentation. Each sensor model accounts
	8.1 Outcomes
	8.1 Outcomes
	Outcome performance measures:
	•
	•
	•
	We produced an open-source sensor simulation framework for autonomous vehicle simulation called Chrono::Sensor. This code will be provided alongside the open-source Project Chrono. Both Chrono and Chrono::Sensor are developed/augmented by the Simulation Based Engineering Lab at the University of Wisconsin-Madison.

	•
	•
	Chrono::Sensor is and will continue to be used in further work involving the research and development of a multi-agent connected autonomous vehicle simulator.

	•
	•
	Chrono::Sensor will be augmented and used in related research on improving and understanding sensor realism for reducing the simulation to reality gap.

	•
	•
	This project was the basis of a successful Ph.D. Preliminary Examination in May 2020.

	•
	•
	Chrono::Sensor is the subject of fve conference presentations and submissions, one journal publication, and two
	-
	pending journal submissions. [26, 27, 28]

	8.2 Impacts
	8.2 Impacts
	This research and the subsequent sensor simulation framework could make a di.erence by allowing researchers to better understand the safety of autonomous vehicles, improve autonomous vehicle perception and navigation, and demonstrate the capability of algorithms in safety-critical scenarios to the public at large. Specifcally, the technology associated with this SAFER-SIM project, and the broader software to which this module belongs, is designed with the following intent:
	•
	•
	•
	Allow researchers to better understand and improve the safety of autonomous vehicles by facilitating numerous iterative simulations in safety-critical scenarios.

	•
	•
	Allow for the understanding and demonstration of vehicle safety and capability for the public at large.

	8.3 Future Work
	8.3 Future Work
	We are in the process of:
	•
	•
	•
	releasing the platform as open source by the end of summer 2020

	•
	•
	making further improvements to the simulation framework

	•
	•
	making further improvements to the sensor models

	•
	•
	providing support for additional sensors

	•
	•
	researching additional methods/models for sensor simulation

	Chrono::Sensor is still in development and will be made public in the coming weeks. It will be released as a module in the open-source multi-physics simulation platform, The initial framework and models in Chrono::Sensor were made possible through this SAFER-SIM project, and the framework will be expanded as part of a Ph.D thesis. Future work centers around expanding the supported sensors to include a broader set of automotive sensors including radar, odometer, encoders, etc. Additionally, prepackaged solut
	Project Chrono [29].

	Further research will also focus on benchmarking the realism of the current noise and distortion models, and seeking to develop new models where the current solutions fail to provide satisfactory realism.

	Bibliography
	Bibliography
	[1] G. Girardin, “Road to robots. sensors and computing for autonomous vehicle,” in Autonomous Vehicle Sensors Conference, 2018.
	[2] “Velodyne lidar.” 2018. Accessed: 2020-04-17.
	http://velodynelidar.com/,

	[3] Project Chrono, “Chrono: An Open Source Framework for the Physics-Based Simulation of Dynamic Systems.” 2020. Accessed: 2020-03-03.
	http://projectchrono.org,

	[4] A. Tasora, R. Serban, H. Mazhar, A. Pazouki, D. Melanz, J. Fleischmann, M. Taylor, H. Sugiyama, and D. Negrut, “Chrono: An open source multi-physics dynamics engine,” in High Performance Computing in Science and Engineering – Lecture Notes in Computer Science (T. Kozubek, ed.), pp. 19–49, Springer, 2016.
	[5] R. Serban, M. Taylor, D. Negrut, and A. Tasora, “Chrono::Vehicle Template-Based Ground Vehicle Modeling and Simulation,” Intl. J. Veh. Performance, vol. 5, no. 1, pp. 18–39, 2019.
	[6] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke, D. McAllister, M. McGuire,
	K. Morley, A. Robison, and M. Stich, “OptiX: A general purpose ray tracing engine,” ACM Transactions on Graphics, August 2010.
	[7] NVIDIA Corporation, “NVIDIA Turing GPU Architecture,” 2018. WP-09183-001 v01.
	[8] J. E. Farrell, P. B. Catrysse, and B. A. Wandell, “Digital camera simulation,” Applied Optics, vol. 51, no. 4, pp. A80–A90, 2012.
	[9] J. E. Farrell and B. A. Wandell, “Image systems simulation,” Handbook of Digital Imaging, pp. 1–28, 2015.
	[10] P. Sturm, S. Ramalingam, J.-P. Tardif, S. Gasparini, J. Barreto, et al., “Camera models and fundamental concepts used in geometric computer vision,” Foundations and Trends ® in Computer Graphics and Vision, vol. 6, no. 1–2, pp. 1–183, 2011.
	[11] Z. Tang, R. G. von Gioi, P. Monasse, and J.-M. Morel, “A precision analysis of camera distortion models,” IEEE Transactions on Image Processing, vol. 26, no. 6, pp. 2694–2704, 2017.
	[12] EMVA Standard, “Standard for characterization of image sensors and cameras,” European Machine Vision Association, vol. 3, 2010.
	[13] C. Liu, R. Szeliski, S. B. Kang, C. L. Zitnick, and W. T. Freeman, “Automatic estimation and removal of noise from a single image,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 299–314, 2008.
	[14] S. W. Hasino., F. Durand, and W. T. Freeman, “Noise-optimal capture for high dynamic range photography,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp. 553–560, IEEE, 2010.
	[15] S. Guo, Z. Yan, K. Zhang, W. Zuo, and L. Zhang, “Toward convolutional blind denoising of real photographs,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1712–1722, 2019.
	BIBLIOGRAPHY
	[16] R. Jaroensri, C. Biscarrat, M. Aittala, and F. Durand, “Generating training data for denoising real rgb images via camera pipeline simulation,” arXiv preprint arXiv:1904.08825, 2019.
	[17] A. Abdelhamed, S. Lin, and M. S. Brown, “A high-quality denoising dataset for smartphone cameras,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.
	[18] D. Pascale, “RGB coordinates of the Macbeth ColorChecker,” The BabelColor Company, vol. 6, 2006.
	[19] F. Casta, G. Beruvides, A. Villalonga, and R. E. Haber, “Computational intelligence for simulating a lidar sensor,” in Sensor Systems Simulations, pp. 149–178, Springer, 2020.
	[20] C. Goodin, M. Doude, C. Hudson, and D. Carruth, “Enabling o.-road autonomous navigation-simulation of lidar in dense vegetation,” Electronics, vol. 7, no. 9, p. 154, 2018.
	[21] T. Yin, J. Qi, J.-P. Gastellu-Etchegorry, S. Wei, B. D. Cook, and D. C. Morton, “Gaussian decomposition of lidar waveform data simulated by dart,” in IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 4300–4303, IEEE, 2018.
	[22] B. Balaguer and S. Carpin, “Where Am I? A Simulated GPS Sensor for Outdoor Robotic Applications,” in International Conference on Simulation, Modeling, and Programming for Autonomous Robots, pp. 222–233, Springer, 2008.
	[23] P. J. Durst and C. Goodin, “High fdelity modelling and simulation of inertial sensors commonly used by autonomous mobile robots,” World Journal of Modelling and Simulation, vol. 8, no. 3, pp. 172–184, 2012.
	[24] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fdelity visual and physical simulation for autonomous vehicles,” in Field and service robotics, pp. 621–635, Springer, 2018.
	[25] “Continental Mapping.” 2019. Accessed: 2019-04-19.
	https://www.continentalmapping.com/,

	[26] D. Negrut, R. Serban, A. Elmquist, J. Taves, A. Young, A. Tasora, and S. Benatti, “Enabling artifcial intelligence studies in o.-road mobility through physics-based simulation of multi-agent scenarios,” in Proceedings of Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), Aug. 2020.
	[27] A. Elmquist, D. Hatch, R. Serban, D. Noyce, and D. Negrut, “Sensing simulation for the virtual testing of autonomous vehicle safety and performance,” in Proceedings of Road Safety and Simulation Conference, Oct. 2019.
	[28] A. Elmquist and D. Negrut, “Methods and models for simulating autonomous vehicle sensors,” IEEE Transactions on Intelligent Vehicles, pp. 1–1, 2020.
	[29] Project Chrono, “ProjectChrono API Web Page.” Accessed: 2017-10-20.
	http://api.projectchrono.org/.

Accessibility Report

		Filename:

		Physics-Based Sensor Models for Virtual Simulation_rev.REM.pdf

		Report created by:

		Nellie Kamau, Catalog Librarian, Nellie.kamau.ctr@dot.gov

		Organization:

		DOT, NTL

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 0

		Passed manually: 3

		Failed manually: 0

		Skipped: 0

		Passed: 25

		Failed: 4

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Failed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed manually		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Failed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Failed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Failed		Appropriate nesting

Back to Top

